Advertisement

Experimental Astronomy

, Volume 38, Issue 1–2, pp 1–9 | Cite as

A new solution for mirror coating in γ-ray Cherenkov astronomy

  • A. Bonardi
  • G. Pühlhofer
  • S. Hermanutz
  • A. Santangelo
Original Article

Abstract

In the γ-ray Cherenkov Astronomy framework mirror coating plays a crucial role in defining the light response of the telescope. We carried out a study for new mirror coating solutions with both a numerical simulation software and a vacuum chamber for small sample production. In this article, we present a new mirror coating solution consisting of a 28-layer interferometric SiO2-TiO2-HfO2 design deposited on a glass substrate, whose average reflectance is above 90% for normally incident light in the wavelength range between 300 and 550 nm.

Keywords

Mirror coating Reflectance IACTs 

Notes

Acknowledgments

The research leading to these results has received funding from the European Union’s Seventh Framework Program (FP7/2007-2013) under grant agreement n 262053.

This work has been partially funded by the BMBF/PT-DESY, grants 05A11VT1 and 05A10VTA.

We want also to thank the Max Planck Institut für Kernphysik (MPIK) Heidelberg, and specially Andreas Förster, for the help and the technological support.

References

  1. 1.
    Davies, J.M., Cotton, E.S.: J. Sol. Energy Sci. Eng. 1, 16 (1957)ADSCrossRefGoogle Scholar
  2. 2.
    Baixeras, C.: for the Magic Collaboration: The MAGIC telescope. Nucl. Phys. B (Proc. Suppl.) 114, 247–252 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Deil, C., et al.: AIP Conf. Proc. 1085, 693 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Bähr, J., et al.: Status of the CTA medium size telescope prototype. AIP Conf. Proc. 1505, 753 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    Vassiliev, V., et al.: Astropart. Phys. 28, 10–27 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Benn, C.R., Ellison, S.L.: New Astron. Rev. 42, 503 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Bernlöhr, K., et al. Astropart. Phys. 20, 111–128 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Holder, J, et al.: Astropart. Phys. 25, 391–401 (2006)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Vernani, D., et al.: Proc. SPIE 7018, 70180V (2008). doi: 10.1117/12.790631 CrossRefGoogle Scholar
  10. 10.
    Pareschi, G., et al.: Status of the technologies for the production of the Cherenkov Telescope Array (CTA) mirrors. In: Proceedings SPIE 8861, Optics for EUV, X-Ray, and Gamma-Ray Astronomy VI, vol. 886103 (2013). doi: 10.1117/12.2025476
  11. 11.
    Förster, A., et al.: ICRC 2013 Proceeding, ID-0747 (2013)Google Scholar
  12. 12.
    Doro, M., et al.: NIM A 595, 200–203 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Förster, A., et al.: ICRC 2011 Proceeding, ID-0936 (2011)Google Scholar
  14. 14.
    Förster, A, et al.: ICRC 2013 Proceeding, ID-0755 (2013)Google Scholar
  15. 15.
    Chadwick, P.M., et al.: ICRC 2013 proceeding, ID-0847 (2013)Google Scholar
  16. 16.
    The CTA Consortium: Exp. Astron. 32, 193–316 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Duyar, Ö, et al.: J. Phys. D: Appl. Phys. 41 095307 (2008). doi: 10.1088/0022-3727/41/9/095307 ADSCrossRefGoogle Scholar
  18. 18.
    Jerman, M., Mergel, D.: Thin Solid Films 515 (17), 6904–6908 (2007). doi: 10.1016/j.tsf.2007.01.038 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. Bonardi
    • 1
  • G. Pühlhofer
    • 1
  • S. Hermanutz
    • 1
  • A. Santangelo
    • 1
  1. 1.University of TübingenInstitut für Astronomie und Astrophysik TübingenTübingenGermany

Personalised recommendations