Experimental Astronomy

, Volume 37, Issue 3, pp 481–501 | Cite as

STE-QUEST mission and system design

Overview after completion of Phase-A
  • Gerald Hechenblaikner
  • Marc-Peter Hess
  • Marianna Vitelli
  • Jan Beck
Original Article


STE-QUEST is a fundamental science mission which is considered for launch within the Cosmic Vision programme of the European Space Agency (ESA). Its main scientific objectives relate to probing various aspects of Einstein’s theory of general relativity by measuring the gravitational red-shift of the earth, the moon and the sun as well as testing the weak equivalence principle to unprecedented accuracy. In order to perform the measurements, the system features a spacecraft equipped with two complex instruments, an atomic clock and an atom interferometer, a ground-segment encompassing several ground-terminals collocated with the best available ground atomic clocks, and clock comparison between space and ground via microwave and optical links. The baseline orbit is highly eccentric and exhibits strong variations of incident solar flux, which poses challenges for thermal and power subsystems in addition to the difficulties encountered by precise-orbit-determination at high altitudes. The mission assessment and definition phase (Phase-A) has recently been completed and this paper gives a concise overview over some system level results.


STE-QUEST Space mission Einstein’s Equivalence Principle 



The work underlying this paper was performed during the mission assessment and definition activities (Phase 0/A) for the European Space Agency (ESA) under contract number 4000105368/12/NL/HB. The authors gratefully acknowledge fruitful discussions and inputs from the ESA study team members, in particular Martin Gehler (study manager), Luigi Cacciapuoti (project scientist), Robin Biesbroek (system engineer), Astrid Heske, (payload manager), Florian Renk (mission analyst), Pierre Waller, (atomic clock support), and Eric Wille (atom interferometer support). We also thank the Astrium team members for their contributions to the study, in particular Felix Beck, Marcel Berger, Christopher Chetwood, Albert Falke, Jens-Oliver Fischer, Jean-Jacques Floch, Sören Hennecke, Fabian Hufgard, Günter Hummel, Christian Jentsch, Andreas Karl, Johannes Kehrer, Arnd Kolkmeier, Michael G. Lang, Johannes Loehr, Marc Maschmann, Mark Millinger, Dirk Papendorf, Raphael Naire, Tanja Nemetzade, Bernhard Specht, Francis Soualle and Michael Williams. The authors are grateful for important contributions from our project partners Mathias Lezius (Menlo Systems), Wolfgang Schäfer, Thorsten Feldmann (TimeTech), and Sven Schäff (Astos Solutions). Finally, we are indebted to Rüdiger Gerndt and Ulrich Johann (Astrium) for regular support and many useful discussions.


  1. 1.
    Gehler M., Cacciapuoti L., Heske A., Biesbroek, R., Waller, P., Wille, E.: The ESA STE-QUEST Mission Study - Space Mission Design to Test Einstein’s Equivalence Principle. In: Proceedings of the AIAA SPACE 2013 Conference, paper number: 2013.5464, American Institute of Aeronautics and Astronautics doi: 10.2514/6.2013-5464 (2013)
  2. 2.
    Schiller S., et al.: Space Time Explorer and Quantum Equivalence Principle Space Test (STE-QUEST): proposal in response to ESA M3 call 2010 for the cosmic vision programme, available at (2010)
  3. 3.
    Cacciapuoti, L.: STE-QUEST science requirements document, FPM-SA- DC-00001, issue 1, revision 5 (April 2013). Technical report, European Space Agency, available at (2013)
  4. 4.
    Damour, T., Polyakov, A.M.: The string dilation and a least coupling principle. Nucl. Phys. B 423(2), 532–558 (1994)ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Mattingly, D.: Modern tests of Lorentz invariance. Living Rev. Relativ. 8(5) (2005)Google Scholar
  6. 6.
    Colladay, D., Kosteleckỳ, V.A.: Lorentz-violating extension of the standard model. Phys. Rev. D 58(11), 116002 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Moody, J.E., Wilczek, Frank.: New macroscopic forces? Phys. Rev. D 30, 130–138 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    Göklü, E., Lämmerzahl, C.: Metric fluctuations and the weak equivalence principle. Classical Quantum Gravity 25(10), 105012 (2008)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    STE-QUEST Study Team.: STE-QUEST assessment study report (Yellow Book), ESA/SRE(2013)6, (16-december-2013). Technical report, European Space Agency, available at (2013)
  10. 10.
    STE-QUEST Study Team.: STE-QUEST payload definition document, SRE-PA/2011-075/TN/PW, issue 1, revision 1 (June 2012). Technical report, European Space Agency, available at (2012)
  11. 11.
    Salomon, C.H., Dimarcq, N., Abgrall, M., Clairon, A., Laurent, P.H., Lemonde, P., Santarelli, G., Uhrich, P., Bernier, L.G., Jornod, A., et al.: Cold atoms in space and atomic clocks: ACES. C. R. Acad. Sci. IV-Phys. 2(9), 1313–1330 (2001)Google Scholar
  12. 12.
    Cacciapuoti, L., Salomon, C.H.: Space clocks and fundamental tests: the ACES experiment. Eur. Phys. J. Spec. Top. 172(1), 57–68 (2009)CrossRefGoogle Scholar
  13. 13.
    Udem, T.H., Holzwarth, R., Hänsch, T.W.: Optical frequency metrology. Nature 416(6877), 233–237 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Ye, J., Cundiff, S.T.: Femtosecond optical frequency comb: Principle, Operation and Applications. Springer, New York (2005)CrossRefGoogle Scholar
  15. 15.
    Webster, S., Gill, P.: Force-insensitive optical cavity. Opt. Lett. 36(18), 3572–3574 (2011)CrossRefGoogle Scholar
  16. 16.
    Folkner, W.M., DeVine, G., Klipstein, W.M., McKenzie, K., Shaddock, D., Spero, R., Thompson, D., Wuchenich, N.Y., Stephens, M., et al.: Laser frequency stabilization for GRACE-II. Earth Science Technology Forum, Jet Propulsion Laboratory, Pasadena, CA (2010)Google Scholar
  17. 17.
    Legero, T., Kessler, T., Sterr, U.: Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors. JOSA B 27(5), 914–919 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Kozma, I.Z., Holzwarth, R., Sizmann, A., Mei, M.: Metrology under Control. Optik & Photonik 2(4), 22–27 (2007)CrossRefGoogle Scholar
  19. 19.
    Plattner, M.P., Hugentobler, U., Voithenleitner, D., Hseinze, M., Klein, V., Kemmerle, K., Bedrich, S.: Optical clock technology for optimized satellite navigation. In: EFTF 2010, the 24th European Frequency and Time Forum, 13–16 April 2010, vol. 1, p. 2 (2010)Google Scholar
  20. 20.
    Lezius, M., Predehl, K., Stower, W., Turler, A., Greiter, M., Hoeschen, C.H., Thirolf, P., Assmann, W., Habs, D., Prokofiev, A., et al.: Radiation induced absorption in rare earth doped optical fibers. IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Schiller, S., Görlitz, A., Nevsky, A., Koelemeij, J.C.J., Wicht, A., Gill, P., Klein, H.A., Margolis, H.S., Mileti, G., Sterr, U., et al.: Optical clocks in space. Nucl. Phys. B-Proc. Suppl. 166, 300–302 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Kasevich, M., Chu, S.: Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181–184 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    Rasel, E.M., Oberthaler, M.K., Batelaan, H., Schmiedmayer, J., Zeilinger, A.: Atom wave interferometry with diffraction gratings of light. Phys. Rev. Lett. 75, 2633–2637 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    Schubert, C., Hartwig, J., Ahlers, H., Posso-Trujillo, K., Gaaloul, N., Velte, U., Landragin, A., Bertoldi, A., Battelier, B., Bouyer, P., et al.: Differential atom interferometry with Rb87 Rb85 for testing the UFF in STE-QUEST. arXiv preprint arXiv:1312.5963 (2013)
  25. 25.
    Aguilera, D., Ahlers, H., Battelier, B., Bawamia, A., Bertoldi, A., Bondarescu, R., Bongs, K., Bouyer, P., Braxmaier, C., Cacciapuoti, L., et al.: STE-QUEST-test of the universality of free fall using cold atom interferometry. arXiv preprint arXiv:1312.5980 (2013)
  26. 26.
    Sorrentino, F., Bongs, K., Bouyer, P., Cacciapuoti, L., de Angelis, M., Dittus, H., Ertmer, W., Giorgini, A., Hartwig, J., Hauth, M., et al.: A compact atom interferometer for future space missions. Microgravity Sci. Technol. 22(4), 551–561 (2010)CrossRefGoogle Scholar
  27. 27.
    van Zoest, T., Gaaloul, N., Singh, Y., Ahlers, H., Herr, W., Seidel, S.T., Ertmer, W., Rasel, E., Eckart, M., Kajari, E., et al.: Bose-Einstein condensation in microgravity. Science 328(5985), 1540–1543 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Stern, G., Battelier, B., Geiger, R., Varoquaux, G., Villing, A., Moron, F., Carraz, O., Zahzam, N., Bidel, Y., Chaibi, W., et al.: Light-pulse atom interferometry in microgravity. Eur. Phys. J. D 53(3), 353–357 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Hess, M.P., Kehrer, J., Kufner, M., Durand, S., Hejc, G., Fruhauf, H., Cacciapuoti, L., Much, R., Nasca, R.: ACES MWL status and test results. In: Frequency Control and the European Frequency and Time Forum (FCS), 2011 Joint Conference of the IEEE International, pp. 1–8. IEEE (2011)Google Scholar
  30. 30.
    Seidel, A., Hess, M.P., Kehrer, J., Schafer, W., Kufner, M., Siccardi, M., Cacciapuoti, L., Aguilar Sanches, I., Feltham, S.: The ACES microwave link: instrument design and test results. In: Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International, pp. 1295–1298. IEEE (2007)Google Scholar
  31. 31.
    Gregory, M., Heine, F., Kämpfner, H., Meyer, R., Fields, R., Lunde, C.: TESAT laser communication terminal performance results on 5.6 Gbit coherent inter satellite and satellite to ground links. In: International Conference on Space Optics, vol. 4, p. 8 (2010)Google Scholar
  32. 32.
    Heine, F., Kämpfner, H., Lange, R., Czichy, R., Lutzer, M., Meyer, R.: Laser communication applied for EDRS, the European data relay system. CEAS Space J. 2(1–4), 85–90 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Hechenblaikner, G., Floch, J.-J., Soualle, F., Hess, M.-P.: GNSS-based precise orbit determination for a highly eccentric orbit in the STE-QUEST mission. In: Proceedings of the 26th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2013), Nashville, September 2013, Institute of Navigation (2013)Google Scholar
  34. 34.
    Urschl, C., Beutler, G., Gurtner, W., Hugentober, U., Ploner, M.: Orbit determination for GIOVE-A using SLR tracking data. In: Extending the range. Proceedings of the 15th International Workshop on Laser Ranging, pp. 40–46 (2008)Google Scholar
  35. 35.
    ESA/ESOC. STE-QUEST: Mission Analysis Guidelines (MAG), issue 2, revision 0, Technical report, European Space Agency (2012)Google Scholar
  36. 36.
    Montenbruck, O., Eberhard, G.: Satellite orbits: models, methods, and applications. Springer, Berlin Heidelberg (2000)Google Scholar
  37. 37.
    Hinkley, N., Sherman, J.A., Phillips, N.B., Schioppo, M., Lemke, N.D., Beloy, K., Pizzocaro, M., Oates, C.W., Ludlow, A.D.: An atomic clock with 10−18 instability. arXiv preprint arXiv:1305.5869 (2013)
  38. 38.
    Bloom, B.J., Nicholson, T.L., Williams, J.R., Campbell, S.L., Bishof, M., Zhang, X., Zhang, W., Bromley, S.L., Ye, J.: A New Generation of Atomic Clocks: accuracy and stability at the 10−18 level. ArXiv e-prints (2013)Google Scholar
  39. 39.
    Rosenband, T., Hume, D.B., Schmidt, P.O., Chou, C.W., Brusch, A., Lorini, L., Oskay, W.H., Drullinger, R.E., Fortier, T.M., Stalnaker, J.E., et al.: Frequency ratio of Al+ and Hg+ single-ion optical clocks, metrology at the 17th decimal place. Science 319(5871), 1808–1812 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Janovsky, R., Kassebom, M., Liibberstedt, H., Romberg, O., Burkhardt, H., Sippel, M., Kriille, G., Fritsche, B.: End-of-life de-orbiting strategies for satellites. Sci. Technol. Ser. 109, 411–428 (2004)Google Scholar
  41. 41.
    Klinkrad, H., Beltrami, P., Hauptmann, S., Martin, C., Sdunnus, H., Stokes, H., Walker, R., Wilkinson, J.: The ESA space debris mitigation handbook 2002. Adv. Space Res. 34(5), 1251–1259 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    Matticari, G., Noci, G., Ceruti, L., Fallerini, L., Atzei, A., Edwards, C., Morris, G., Pfaab, K.: Cold Gas Micro Propulsion for European Science Missions: status on development and realization activities for Lisa Pathfinder, Microscope and forthcoming Euclid, following the successful delivery of the first FM for GAIA Program. 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & ExhibitGoogle Scholar
  43. 43.
    Duchayne, L., Mercier, F., Wolf, P.: Orbit determination for next generation space clocks. Astron. and Astrophys. 504, 653–661 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Allan, W.D.: Time and frequency(time-domain) characterization, estimation, and prediction of precision clocks and oscillators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34(6), 647–654 (1987)ADSCrossRefMathSciNetGoogle Scholar
  45. 45.
    Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E.: GNSS: Global Navigation Satellite Systems: GPS, Glonass, Galileo, and More. Springer, Wien New York (2008)Google Scholar
  46. 46.
    Páramos, J., Hechenblaikner, G.: Probing the flyby anomaly with the future STE-QUEST mission. Planet. Space Sci. 79–80(0), 76–81 (2013)CrossRefGoogle Scholar
  47. 47.
    ITP Engines UK Ltd. ESATAN-TMS thermal engineering manual, available at
  48. 48.
    McNamara, P., Vitale, S., Danzmann, K., et al.: Lisa pathfinder. Class. Quantum Gravity 25(11), 114034 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    Touboul, P., Rodrigues, M., Métris, G., Tatry, B.: MICROSCOPE, testing the equivalence principle in space. C. R. Acad. Sci. IV - Phys 2(9), 1271–1286 (2001)Google Scholar
  50. 50.
    Sumner, T.J., Anderson, J., Blaser, J.-P., Cruise, A.M., Damour, T., Dittus, H., Everitt, C.W.F., Foulon, B., Jafry, Y., Kent, B.J., Lockerbie, N., Loeffler, F., Mann, G., Mester, J., Pegrum, C., Reinhardt, R., Sandford, M., Scheicher, A., Speake, C.C., Torii, R., Theil, S., Touboul, P., Vitale, S., Vodel, W., Worden, P.W.: STEP (satellite test of the equivalence principle). Adv. Space Res. 39, 254–258 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Gerald Hechenblaikner
    • 1
  • Marc-Peter Hess
    • 1
  • Marianna Vitelli
    • 1
  • Jan Beck
    • 1
  1. 1.EADS AstriumFriedrichshafenGermany

Personalised recommendations