Advertisement

Experimental Astronomy

, Volume 37, Issue 1, pp 109–125 | Cite as

Improving Bayesian analysis for LISA Pathfinder using an efficient Markov Chain Monte Carlo method

  • Luigi Ferraioli
  • Edward K. Porter
  • Michele Armano
  • Heather Audley
  • Giuseppe Congedo
  • Ingo Diepholz
  • Ferran Gibert
  • Martin Hewitson
  • Mauro Hueller
  • Nikolaos Karnesis
  • Natalia Korsakova
  • Miquel Nofrarias
  • Eric Plagnol
  • Stefano Vitale
Original Article

Abstract

We present a parameter estimation procedure based on a Bayesian framework by applying a Markov Chain Monte Carlo algorithm to the calibration of the dynamical parameters of the LISA Pathfinder satellite. The method is based on the Metropolis-Hastings algorithm and a two-stage annealing treatment in order to ensure an effective exploration of the parameter space at the beginning of the chain. We compare two versions of the algorithm with an application to a LISA Pathfinder data analysis problem. The two algorithms share the same heating strategy but with one moving in coordinate directions using proposals from a multivariate Gaussian distribution, while the other uses the natural logarithm of some parameters and proposes jumps in the eigen-space of the Fisher Information matrix. The algorithm proposing jumps in the eigen-space of the Fisher Information matrix demonstrates a higher acceptance rate and a slightly better convergence towards the equilibrium parameter distributions in the application to LISA Pathfinder data. For this experiment, we return parameter values that are all within ∼1σ of the injected values. When we analyse the accuracy of our parameter estimation in terms of the effect they have on the force-per-unit of mass noise, we find that the induced errors are three orders of magnitude less than the expected experimental uncertainty in the power spectral density.

Keywords

Markov Chain Monte Carlo LISA eLISA Gravitational waves LISA Pathfinder LISA technology package LTP 

Notes

Acknowledgment

This research was supported by the Centre National d’Études Spatiales (CNES).

References

  1. 1.
    Armano, M., et al.: Class. Quantum Gravity 26(9), 094001 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Antonucci, F., et al.: Class. Quantum Gravity 28(9), 094001 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    McNamara, P., Vitale, S., Danzmann, K.: On behalf of the LISA Pathfinder science working team. Class. Quantum Gravity 25(11), 114034 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Amaro-Seoane, P., et al.: arXiv: 1201.3621 (2012)
  5. 5.
    Antonucci, F., et al.: Class. Quantum Gravity 28(9), 094006 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Congedo, G., Ferraioli, L., Hueller, M., De Marchi, F., Vitale, S., Armano, M., Hewitson, M., Nofrarias, M.: Phys. Rev. D 85(12), 122004 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Nofrarias, M., Röver, C., Hewitson, M., Monsky, A., Heinzel, G., Danzmann, K., Ferraioli, L., Hueller, M., Vitale, S.: Phys. Rev. D 82(12), 122002 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: J. Chem. Phys. 21(6), 1087 (1953)ADSCrossRefGoogle Scholar
  9. 9.
    Hastings, W.K.: Biometrika 57(1), 97 (1970)CrossRefMATHGoogle Scholar
  10. 10.
    Hitchcock, D.B.: Am. Stat. 57(4), 254 (2003)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Porter, E.K.: Gravitational Wave Notes (Online Journal) 01 (2009)Google Scholar
  12. 12.
    Babak, S., Baker, J.G., Benacquista, M.J., Cornish, N.J., Crowder, J., et al.: Class. Quantum Gravity 25, 184026 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Ferraioli, L., Hueller, M., Vitale, S., Heinzel, G., Hewitson, M., Monsky, A., Nofrarias, M.: Phys. Rev. D 82(4), 042001 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Antonucci, F., et al.: Class. Quantum Gravity 28(9), 094002 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Cornish, N.J., Porter, E.K.: Phys. Rev. D 75(2), 021301 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Cornish, N.J., Porter, E.K.: Class. Quantum Gravity 24(23), 5729 (2007)ADSCrossRefMATHGoogle Scholar
  17. 17.
    Gair, J.R., Porter, E.K.: Class. Quantum Gravity 26, 225004 (2009)ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    Feroz, F., Gair, J.R., Hobson, M.P., Porter, E.K.: Class. Quantum Gravity 26, 215003 (2009)ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    Babak, S., Gair, J.R., Porter, E.K.: Class. Quantum Gravity 26, 135004 (2009)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    Cornish, N.J., Porter, E.K.: Class. Quantum Gravity 23, 761 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Cornish, N.J.: Class. Quantum Gravity 28, 094016 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Littenberg, T.B., Cornish, N.J.: Phys. Rev. D 80, 063007 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Cornish, N.J., Littenberg, T.B.: Phys. Rev. D 76, 083006 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    Crowder, J., Cornish, N.J.: Phys. Rev. D 75, 043008 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Del Pozzo, W., Veitch, J., Vecchio, A.: Phys. Rev. D 83, 082002 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Van der Sluys, M., et al.: Bull. Am. Astron. Soc. 38, 992 (2006)ADSGoogle Scholar
  27. 27.
    Petiteau, A., et al.Phys. Rev. D 81, 104016 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Harris, F.: Proc. IEEE 66(1), 51 (1978)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Luigi Ferraioli
    • 1
  • Edward K. Porter
    • 1
  • Michele Armano
    • 2
  • Heather Audley
    • 3
  • Giuseppe Congedo
    • 4
  • Ingo Diepholz
    • 3
  • Ferran Gibert
    • 5
  • Martin Hewitson
    • 3
  • Mauro Hueller
    • 4
  • Nikolaos Karnesis
    • 5
  • Natalia Korsakova
    • 3
  • Miquel Nofrarias
    • 5
  • Eric Plagnol
    • 1
  • Stefano Vitale
    • 4
  1. 1.APC, Université Paris Diderot, CNRS/IN2P3, CEA/IfruParis Cedex 13France
  2. 2.SRE-OD ESAC, European Space AgencyMadridSpain
  3. 3.Albert-Einstein-InstitutMax-Planck-Institut fuer Gravitationsphysik und Universität HannoverHannoverGermany
  4. 4.University of Trento and INFNPovo (Trento)Italy
  5. 5.Institut de Ciències de l’Espai, (CSIC-IEEC), Facultat de Ciències, Campus UABBellaterraSpain

Personalised recommendations