Experimental Astronomy

, Volume 37, Issue 2, pp 253–330 | Cite as

Herschel celestial calibration sources

Four large main-belt asteroids as prime flux calibrators for the far-IR/sub-mm range
  • Thomas MüllerEmail author
  • Zoltán Balog
  • Markus Nielbock
  • Tanya Lim
  • David Teyssier
  • Michael Olberg
  • Ulrich Klaas
  • Hendrik Linz
  • Bruno Altieri
  • Chris Pearson
  • George Bendo
  • Esa Vilenius
Original Article


Celestial standards play a major role in observational astrophysics. They are needed to characterise the performance of instruments and are paramount for photometric calibration. During the Herschel Calibration Asteroid Preparatory Programme approximately 50 asteroids have been established as far-IR/sub-mm/mm calibrators for Herschel. The selected asteroids fill the flux gap between the sub-mm/mm calibrators Mars, Uranus and Neptune, and the mid-IR bright calibration stars. All three Herschel instruments observed asteroids for various calibration purposes, including pointing tests, absolute flux calibration, relative spectral response function, observing mode validation, and cross-calibration aspects. Here we present newly established models for the four large and well characterized main-belt asteroids (1) Ceres, (2) Pallas, (4) Vesta, and (21) Lutetia which can be considered as new prime flux calibrators. The relevant object-specific properties (size, shape, spin-properties, albedo, thermal properties) are well established. The seasonal (distance to Sun, distance to observer, phase angle, aspect angle) and daily variations (rotation) are included in a new thermophysical model setup for these targets. The thermophysical model predictions agree within 5 % with the available (and independently calibrated) Herschel measurements. The four objects cover the flux regime from just below 1,000 Jy (Ceres at mid-IR N-/Q-band) down to fluxes below 0.1 Jy (Lutetia at the longest wavelengths). Based on the comparison with PACS, SPIRE and HIFI measurements and pre-Herschel experience, the validity of these new prime calibrators ranges from mid-infrared to about 700 μm, connecting nicely the absolute stellar reference system in the mid-IR with the planet-based calibration at sub-mm/mm wavelengths.


Herschel Space Observatory PACS SPIRE HIFI Far-infrared Instrumentation Calibration Celestial standards Asteroids 



We would like to thank the PIs of the various scientific projects for permission to use their Herschel science data in the context of our calibration work.


  1. 1.
    Altieri, B.: PACS Observer’s Manual, HERSCHEL-HSC-DOC-0832, vol. 2.4 (2011) ,
  2. 2.
    Balog, Z., Müller, T.G., Nielbock, M., et al.: The Herschel-PACS photometer calibration: point-source flux calibration. (2013), Exp. Astron. this issueGoogle Scholar
  3. 3.
    Beichman, C.A., Neugebauer, G., Habing, H.J., Clegg, P.E., Chester, T.J.: Infrared Astronomical Satellite (IRAS) Catalogs and Atlases, vol. 1: Explanatory Supplement. (1988)Google Scholar
  4. 4.
    Belskaya, I.N., Fornasier, S., Krugly, Yu.N., et al.: Puzzling asteroid 21 Lutetia: our knowledge prior to the Rosetta fly-by. A&A 515, 29 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Bendo, G.J., Griffin, M.J., Bock, J.J., et al.: Flux calibration of the Herschel-SPIRE photometer. MNRAS 433, 3062 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Bowell, E., Hapke, B., Domingue, D., et al.: Application of photometric models to asteroids. In: Binzel, R.P., et al. (eds.) Asteroids II, pp. 524–556. University of Arizona Press (1989)Google Scholar
  7. 7.
    Carry, B., Dumas, C., Fulchignoni, M., et al.: Near-infrared mapping and physical properties of the dwarf-planet Ceres. A&A 478, 235 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Carry, B., Dumas, C., Kaasalainen, M., et al.: Physical properties of (2) Pallas. Icarus 205, 460 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Carry, B., Kaasalainen, M., Merline, W.J., et al.: Shape modeling technique KOALA validated by ESA Rosetta at (21) Lutetia. P&SS 66, 200 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Chamberlain, M.A., Boynton, W.V.: Ceres lightcurve analysis Period determination. Icarus 188, 451 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Cohen, M.: Stellar calibration in the infrared: extending the legacy of the KAO, ISO, and MSX to SIRTF and beyond. In: Metcalfe, L., Salama, A., Peschke, S.B., Kessler, M.F. (eds.) Proceedings of the Conference “The Calibration Legacy of the ISO Mission”, p. 135. ESA SP-481 (2003)Google Scholar
  12. 12.
    Decin, L.: Stellar models in IR calibration. In: Metcalfe, L., Salama, A., Peschke, S.B., Kessler, M.F. (eds.) Proceedings of the Conference “The Calibration Legacy of the ISO Mission”, p. 141. ESA SP-481 (2003)Google Scholar
  13. 13.
    de Graauw, Th., Helmich, F.P., Phillips, T.G., et al.: The Herschel-Heterodyne instrument for the far-infrared (HIFI). A&A 518, 6D (2010)CrossRefGoogle Scholar
  14. 14.
    Dehaes, S., Bauwens, E., Decin, L., et al.: Structure of the outer layers of cool standard stars. A&A 533, A107 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Drummond, J.D., Weidenschilling, S.J., Chapman, C.R., Davis, D.R.: Photometric geodesy of main-belt asteroids. II - Analysis of lightcurves for poles, periods, and shapes. Icarus 76, 19 (1988)ADSCrossRefGoogle Scholar
  16. 16.
    Drummond, J.D., Christou, J., Nelson, J.: Triaxial ellipsoid dimensions and poles of asteroids from AO observations at the Keck-II telescope. Icarus 202, 147 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Drummond, J.D., Carry, B., Merline, W.J., et al.: The size and pole of Ceres from nine years of adaptive optics observations at Keck and the VLT, AAS, DPS meeting #45, #208.06 (2013)Google Scholar
  18. 18.
    Dunham, D.W., Dunham, J.B., Binzel, R.P., et al.: The size and shape of (2) Pallas from the 1983 occultation of 1 Vulpeculae. AJ 99, 1636 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    Engelbracht, C.W., Blaylock, M., Su, K.Y.L., et al.: Absolute calibration and characterization of the multiband imaging photometer for spitzer. I. The stellar calibrator sample and the 24 micron calibration. PASP 119, 994–1018 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    Gordon, K.D., Engelbracht, C.W., Fadda, D., et al.: Absolute calibration and characterization of the multiband imaging photometer for Spitzer. II. 70 micron Imaging. PASP 119, 1019–1037 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Griffin, M.J., North, C.E., Schulz, B., et al.: Flux calibration of broadband far infrared and submillimetre photometric instruments: Theory and application to Herschel-SPIRE. MNRAS 434, 992–1004 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Griffin, M.J., Orton, G.S.: The near-millimeter brightness temperature spectra of Uranus and Neptune. Icarus 105, 537 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    Griffin, M.J., Abergel, A., Abreu, A., et al.: The Herschel-SPIRE instrument and its in-flight performance. A&A 518, 3G (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Hammersley, P.L., Jourdain de Muizon, M.: The development of stellar photometric standards for ISO. In: Metcalfe, L., Salama, A., Peschke, S.B., Kessler, M.F. (eds.) Proceedings of the Conference “The Calibration Legacy of the ISO Mission”, p. 129. ESA SP-481 (2003)Google Scholar
  25. 25.
    Horner, J., Müller, T.G., Lykawka, P.S.: (1173) Anchises—thermophysical and dynamical studies of a dynamically unstable Jovian Trojan. MNRAS 423, 2587–2596 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Kawada, M., Baba, H., Barthel, P.D., et al.: The Far-Infrared Surveyor (FIS) for AKARI. PASJ 59, 389 (2007)ADSGoogle Scholar
  27. 27.
    Keihm, S.J.: Interpretation of the lunar microwave brightness temperature spectrum - feasibility of orbital heat flow mapping. Icarus 60, 568 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Kessler, M.F., Steinz, J.A., Anderegg, M.E., et al.: The Infrared Space Observatory (ISO) mission. A&A 315, 27 (1996)ADSGoogle Scholar
  29. 29.
    Klaas, U., Abraham, P., Acosta-Pulido, J.A., et al.: ISOPHOT in-flight calibration strategies. In: Metcalfe, L., Salama, A., Peschke, S.B., Kessler, M.F. (eds.) Proceedings of the Conference “The Calibration Legacy of the ISO Missions”, p. 19. ESA SP-481 (2003)Google Scholar
  30. 30.
    Lagerkvist, C.-I., Magnusson, P., Williams, I.P., et al.: Physical studies of asteroids. XXIV - phase relations for 48 asteroids obtained with the Carlsberg Meridian circle. A&AS 94, 43 (1992)ADSGoogle Scholar
  31. 31.
    Lagerkvist, C.-I., Piironen, J., Erikson, A. (eds.): Asteroid Photometric Catalogue, p. 201, 5th edn. Astronomical Observatory, Uppsala University, Sweden (2001)Google Scholar
  32. 32.
    Lagerros, J.S.V.: Thermal physics of asteroids. I. Effects of shape, heat conduction and beaming. A&A 310, 1011 (1996)ADSGoogle Scholar
  33. 33.
    Lagerros, J.S.V.: Thermal physics of asteroids. III. Irregular shapes and albedo variegations. A&A 325, 1226 (1997)ADSGoogle Scholar
  34. 34.
    Lagerros, J.S.V.: Thermal physics of asteroids. IV. Thermal infrared beaming. A&A 332, 1123 (1998)ADSGoogle Scholar
  35. 35.
    Lamy, P.L., Faury, G., Jorda, L., et al.: Multi-color, rotationally resolved photometry of asteroid 21 Lutetia from OSIRIS/Rosetta observations. A&A 521, 19 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    Lebofsky, L.A., Sykes, M.V., Tedesco, E.T., et al.: A refined “Standard” thermal model for asteroids based on observations of 1 ceres and 2 pallas. Icarus 68, 239–251 (1986)ADSCrossRefGoogle Scholar
  37. 37.
    Li, J.-Y., McFadden, L.A., Parker, J.W., et al.: Photometric analysis of 1 ceres and surface mapping from HST observations. Icarus 182, 143 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    Lim, T.L., Swinyard, B.M., Burgdorf, M.J., et al.: The LWS calibration strategy. In: Metcalfe, L., Salama, A., Peschke, S.B., Kessler, M.F. (eds.) Proceedings of the Conference “The Calibration Legacy of the ISO Missions”, p. 13. ESA SP-481 (2003)Google Scholar
  39. 39.
    Lim, T.L., Stansberry, J., Müller, T.G., et al.: “TNOs are Cool”: a survey of the trans-Neptunian region. III. Thermophysical properties of 90482 Orcus and 136472 makemake. A&A 518, 148–152 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Lutz, D.: PACS Photometer Point Spread Function. PICC-ME-TN-033, vol. 2.0., (2012)
  41. 41.
    Marston, A.P., Teyssier, D.: HIFI Observer’s Manual, HERSCHEL-HSC-DOC-0784, vol. 2.4., (2011)
  42. 42.
    Millis, R.L., Wassermann, L.H., Franz, O.G., et al.: The size, shape, density, and Abledo of ceres from its occultation of BD+8deg471. Icarus 72, 507–518 (1987)ADSCrossRefGoogle Scholar
  43. 43.
    Moór, A., Müller, T.G., Kiss, C., et al.: PACS photometer calibration block analysis. Exp. Astron. this issue (2013)Google Scholar
  44. 44.
    Moreno, R.: PhD thesis. Université de Paris (1998)Google Scholar
  45. 45.
    Moreno, R.: Neptune and Uranus planetary brightness temperature tabulation. Tech. rep., ESA Herschel Science Centre. available from (2012)
  46. 46.
    Müller, T.G.: Asteroids as IR standards for ISOPHOT. A&A 338, 340–352 (1998)Google Scholar
  47. 47.
    Müller, T.G., Lagerros, J.SV., Burgdorf, M., et al.: Fundamental thermal emission parameters of main-belt asteroids derived from ISO. In: Cox, P., Kessler, M.F. (eds.) The Universe as Seen by ISO, p. 141. ESA SP-427 (1999)Google Scholar
  48. 48.
    Müller, T.G., Lagerros, J.SV.: Asteroids as calibration standards in the thermal infrared for space observatories. A&A 381, 324–339 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    Müller, T.G.: Thermophysical analysis of infrared observations of asteroids. M&PS 37, 1919 (2002)ADSGoogle Scholar
  50. 50.
    Müller, T.G., Lagerros, J.S.V.: Asteroids as calibration standards in the thermal infrared—applications and results from ISO. In: Metcalfe, L., Salama, A., Peschke, S.B., Kessler, M.F. (eds.) Proceedings of the Conference “The Calibration Legacy of the ISO Missions”, p. 157. ESA SP-481 (2003)Google Scholar
  51. 51.
    Müller, T.G., Blommaert, J.A.D.L.: 65 Cybele in the thermal infrared: multiple observations and thermophysical analysis. A&A 418, 347–356 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    Müller, T.G., Sterzik, M.F., Schütz, O., et al.: Thermal infrared observations of near-Earth asteroid 2002 NY40. A&A 424, 1075–1080 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    Müller, T.G.: The Asteroid Preparatory Programme for HERSCHEL, ASTRO-F & ALMA. In: Wilson, A. (ed.) Proceedings of the Dusty and Molecular Universe: A Prelude to Herschel and ALMA, p. 471. ESA SP-577 (2005)Google Scholar
  54. 54.
    Müller, T.G., Sekiguchi, T., Kaasalainen, M., et al.: Thermal infrared observations of the Hayabusa spacecraft target asteroid 25143 Itokawa. A&A 443, 347–355 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    Müller, T.G., Ďurech, J., Hasegawa, S., et al.: Thermo-physical properties of 162173 (1999 JU3), a potential flyby and rendezvous target for interplanetary missions—Based on the experience from the Hayabusa flyby target 25143 Itokawa. A&A 525, 145 (2011)CrossRefGoogle Scholar
  56. 56.
    Müller, T.G., Okumura, K., Klaas, U.: PACS Photometer Passbands and Colour Correction Factors for Various Source SEDs, PICC-ME-TN-038, vol. 1.0., (2011)
  57. 57.
    Müller, T.G., Nielbock, M., Balog, Z., et al.: PACS Photometer—Point-Source Flux Calibration, PICC-ME-TN-037, vol. 1.0. (2011)Google Scholar
  58. 58.
    Müller, T.G., O’Rourke, L., Barucci, A.M., et al.: Physical properties of OSIRIS-REx target asteroid (101955) 1999 RQ36. Derived from Herschel, VLT/ VISIR, and Spitzer observations. A&A 548, 36–45 (2012)CrossRefGoogle Scholar
  59. 59.
    Murakami, H., Baba, H., Barthel, P., et al.: The infrared astronomical mission AKARI. PASJ 59, 369 (2007)ADSGoogle Scholar
  60. 60.
    Nielbock, M., Müller, T.G., Balog, Z., et al. The Herschel-PACS photometer calibration: a time dependent flux calibration for the PACS chopped photometry AOT mode. Exp. Astron. this issue (2013)Google Scholar
  61. 61.
    O’Rourke, L., Müller, T.G., Valtchanov, I., et al.: Thermal & shape properties of asteroid (21) Lutetia from Herschel observations around the Rosetta flyby. P&SS 55, 192 (2012)CrossRefGoogle Scholar
  62. 62.
    Orton, G.S., Burgdorf, M.J.: Planetary Spectral Models as References for Calibration. In: Metcalfe, L., Salama, A., Peschke, S.B., Kessler, M.F. (eds.) Proceedings of the Conference “The Calibration Legacy of the ISO Mission”, p. 147. ESA SP-481 (2003)Google Scholar
  63. 63.
    Pearson, C., Lim, T., North, C.E., et al.: SPIRE point source photometry within the Herschel interactive processing environment (HIPE). Exp. Astron. (2013) this issueGoogle Scholar
  64. 64.
    Pilbratt, G.L., Riedinger, J.R., Passvogel, T., et al.: Herschel Space Observatory. An ESA facility for far-infrared and submillimetre astronomy. A&A 518, L1 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    Poglitsch, A., Waelkens, C., Geis, N., et al.: The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory. A&A 518, L2 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    Reach, W.T., Megeath, S.T., Cohen, M., et al.: Absolute calibration of the infrared array camera on the Spitzer space telescope. PASP 117, 978–990 (2005)ADSCrossRefGoogle Scholar
  67. 67.
    Rieke, G.H., Lebofsky, M.J., Low, F.J.: An absolute photometric system at 10 and 20 microns. AJ 90, 900 (1985)ADSCrossRefGoogle Scholar
  68. 68.
    Rieke, G.H., Young, E.T., Engelbracht, C.W., et al.: The multiband imaging photometer for Spitzer (MIPS). ApJS 154, 25 (2004)ADSCrossRefGoogle Scholar
  69. 69.
    Roelfsema, R.R., Helmich, F.P., Teyssier, D., et al.: In-orbit performance of Herschel-HIFI. A&A 537, A17 (2012)ADSCrossRefGoogle Scholar
  70. 70.
    Russell, C.T., Raymond, C.A., Coradini, A., et al.: Dawn at vesta: testing the protoplanetary paradigm. Science 336, 684 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    Sandell, G.: Secondary calibrators at submillimetre wavelengths. MNRAS 271, 75 (1994)ADSGoogle Scholar
  72. 72.
    Sandell, G.: Submillimetre calibration—experience from ground-based observations. In: Metcalfe, L., Salama, A., Peschke, S.B., Kessler, M.F. (eds.) Proceedings of the Conference “The Calibration Legacy of the ISO Mission”, p. 439. ESA SP-481 (2003)Google Scholar
  73. 73.
    Schmidt, B.E., Thomas, P.C., Bauer, J.M., et al.: The shape and surface variation of 2 Pallas from the hubble space telescope. Sci. 326, 275 (2009)ADSCrossRefGoogle Scholar
  74. 74.
    Schulz, B.: ISOPHOT point source calibration—wrapping it up. In: Metcalfe, L., Salama, A., Peschke, S.B., Kessler, M.F. (eds.) Proceedings of the Conference “The Calibration Legacy of the ISO Mission”, p. 83. ESA SP-481 (2003)Google Scholar
  75. 75.
    Stansberry, J.A., Gordon, K.D., Bhattacharya, B., et al.: Absolute calibration and characterization of the multiband imaging photometer for Spitzer. III. An asteroid-based calibration of MIPS at 160 micron. PASP 119, 1038 (2007)ADSCrossRefGoogle Scholar
  76. 76.
    Swinyard, B.M., Ade, P., Baluteau, J.-P., et al.: In-flight calibration of the Herschel-SPIRE instrument. A&A 518, 4S (2010)ADSCrossRefGoogle Scholar
  77. 77.
    Thomas, P.C., Binzel, R.P., Gaffey, M.J., et al.: Vesta: spin pole, size, and shape from HST images. Icarus 128, 88 (1997)ADSCrossRefGoogle Scholar
  78. 78.
    Thomas, P.C., Parker, J.W., McFadden, L.A., et al.: Differentiation of the asteroid Ceres as revealed by its shape. Nature 437, 224–226 (2005)ADSCrossRefGoogle Scholar
  79. 79.
    Valtchanov, I.: SPIRE Observer’s Manual, HERSCHEL-DOC-0798, vol. 2.4., (2011)
  80. 80.
    Wasserman, L.H., Millis, R.L., Franz, O.G., et al.: The diameter of Pallas from its occultation of SAO 85009. AJ 84, 259 (1979)ADSCrossRefGoogle Scholar
  81. 81.
    Werner, M.W., Roellig, T.L., Low, F.J., et al.: The Spitzer space telescope mission. ApJS 154, 1 (2004)ADSCrossRefGoogle Scholar
  82. 82.
    Wright, E.L., Eisenhardt, P.RM., Mainzer, A.K., et al.: The wide-field infrared survey explorer (WISE): mission description and initial on-orbit performance. AJ 140, 1868–1881 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Thomas Müller
    • 1
    Email author
  • Zoltán Balog
    • 2
  • Markus Nielbock
    • 2
  • Tanya Lim
    • 3
  • David Teyssier
    • 4
  • Michael Olberg
    • 5
  • Ulrich Klaas
    • 2
  • Hendrik Linz
    • 2
  • Bruno Altieri
    • 4
  • Chris Pearson
    • 3
  • George Bendo
    • 6
  • Esa Vilenius
    • 1
  1. 1.Max Planck Institute for Extraterrestrial PhysicsGarchingGermany
  2. 2.Max Planck Institute for AstronomyHeidelbergGermany
  3. 3.Space Science and Technology DepartmentRALOxonUK
  4. 4.European Space Astronomy Centre (ESAC), ESAMadridSpain
  5. 5.Onsala Space ObservatoryChalmers University of TechnologyOnsalaSweden
  6. 6.UK ALMA Regional Centre Node, Jodrell Bank Centre for AstrophysicsManchesterUK

Personalised recommendations