Advertisement

Experimental Astronomy

, Volume 37, Issue 2, pp 129–160 | Cite as

The Herschel-PACS photometer calibration

Point-source flux calibration for scan maps
  • Zoltan BalogEmail author
  • Thomas Müller
  • Markus Nielbock
  • Bruno Altieri
  • Ulrich Klaas
  • Joris Blommaert
  • Hendrik Linz
  • Dieter Lutz
  • Attila Moór
  • Nicolas Billot
  • Marc Sauvage
  • Koryo Okumura
Original Article

Abstract

This paper provides an overview of the PACS photometer flux calibration concept, in particular for the principal observation mode, the scan map. The absolute flux calibration is tied to the photospheric models of five fiducial stellar standards (α Boo, α Cet, α Tau, β And, γ Dra). The data processing steps to arrive at a consistent and homogeneous calibration are outlined. In the current state the relative photometric accuracy is ∼2 % in all bands. Starting from the present calibration status, the characterization and correction for instrumental effects affecting the relative calibration accuracy is described and an outlook for the final achievable calibration numbers is given. After including all the correction for the instrumental effects, the relative photometric calibration accuracy (repeatability) will be as good as 0.5 % in the blue and green band and 2 % in the red band. This excellent calibration starts to reveal possible inconsistencies between the models of the K-type and the M-type stellar calibrators. The absolute calibration accuracy is therefore mainly limited by the 5 % uncertainty of the celestial standard models in all three bands. The PACS bolometer response was extremely stable over the entire Herschel mission and a single, time-independent response calibration file is sufficient for the processing and calibration of the science observations. The dedicated measurements of the internal calibration sources were needed only to characterize secondary effects. No aging effects of the bolometer or the filters have been found. Also, we found no signs of filter leaks. The PACS photometric system is very well characterized with a constant energy spectrum νF ν = λF λ = const as a reference. Colour corrections for a wide range of sources SEDs are determined and tabulated.

Keywords

Herschel space observatory PACS Far-infrared Instrumentation Calibration Scan-map 

Notes

Acknowledgments

We would like to thank the anonymous referee for the comments and suggestions that significantly improved the manuscript. Z. Balog, H. Linz and M. Nielbock are funded by the Deutsches Zentrum für Luft- und Raumfahrt e. V.

References

  1. 1.
    Absil, O., et al.: Circumstellar material in the Vega inner system revealed by CHARA/FLUOR. A&A 452, 237 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Billot, N., et al.: The Herschel-PACS 2560 bolometers imaging camera. SPIE Proc. 6265(62650D), 12 (2006)Google Scholar
  3. 3.
    Cohen, M., et al.: Stellar calibration in the infrared: extending the lagacy of the KAO, ISO, and MSX to SIRTF and beyond. In: Proceedings of the Conference The Calibration Legacy of the ISO Mission, ESA SP-481, vol. 135 (2003)Google Scholar
  4. 4.
    Decin, L., et al.: ISO-SWS calibration and the accurate modelling of cool-star atmospheres: IV. G9 to M2 stars. A&A 400, 709 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Decin, L., Eriksson K: Theoretical model atmosphere spectra used for the calibration of infrared instruments. A&A 472, 1041 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Dehaes, S., et al.: Structure of the outer layers of cool standard stars. A&A 533, 107 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Ducati, J.R.: Catalogue of stellar photometry in Johnson’s 11-color system. In: CDS/ADC Collection of Electronic Catalogues, vol. 2237 (2002)Google Scholar
  8. 8.
    Gordon, K., et al.: Absolute calibration and characterization of the multiband imaging photometer for Spitzer. II. 70 μm imaging. PASP 119, 1019 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Gustafsson, B., et al.: A grid of model atmospheres for metal-deficient giant stars. I, A&A 42, 407 (1975)ADSGoogle Scholar
  10. 10.
    Gustafsson, B., et al.: A grid of model atmospheres for cool stars. In: Proceedings of the Conference Stellar Atmosphere Modeling, ASP Conference Series, vol. 288, p. 331 (2003)Google Scholar
  11. 11.
    Moór, e.t.al.: PACS photometer calibration block analysis. Exp. Astron. (2013)Google Scholar
  12. 12.
    Moreno, R.: Neptune and Uranus planetry brightness temperature tabulation. Tech. rep., ESA Herschel Science Centre. available from ftp://ftp.sciops.esa.int/pub/hsc-calibration/PlanetrayModels/ESA4/
  13. 13.
    Müller, T., et al.: Asteroid calibration. Exp. Astron. (2013)Google Scholar
  14. 14.
    Nielbock, M., et al.: The Herschel-PACS photometer calibration: a time dependent flux calibration for the PACS chopped photometry AOT mode. Exp. Astron. (2013)Google Scholar
  15. 15.
    Pilbratt, G., et al.: Herschel space observatory. A&A 518, L1 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Plez, B., et al.: Spherical opacity sampling model atmospheres for M-giants. I—Techniques, data and discussion. A&A 256, 551 (1992)ADSGoogle Scholar
  17. 17.
    Poglitsch, A., et al.: The photodetector array camera and spectrometer (PACS) on the Herschel space observatory. A&A 518, L2 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Popesso, P., et al.: The effect of the high-pass filter data reduction technique on the Herschel-PACS photometer PSF and noise. A&A (2013). arXiv:1211.4257
  19. 19.
    Price, S.D., et al.: Spectral irradiance calibration in the infrared. XV. Absolute calibration of standard stars by experiments on the midcourse space experiment. AJ 128, 889 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Rieke, G., et al.: An absolute photometric system at 10 and 20 microns. AJ 90, 900 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    Selby, M.J., et al.: Narrow band 1 micron-4 micron infrared photometry of 176 stars. A&AS 74, 127 (1988)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Zoltan Balog
    • 1
    Email author
  • Thomas Müller
    • 2
  • Markus Nielbock
    • 1
  • Bruno Altieri
    • 3
  • Ulrich Klaas
    • 1
  • Joris Blommaert
    • 4
  • Hendrik Linz
    • 1
  • Dieter Lutz
    • 2
  • Attila Moór
    • 5
  • Nicolas Billot
    • 6
  • Marc Sauvage
    • 7
  • Koryo Okumura
    • 7
  1. 1.Max-Planck-Institut für AstronomieHeidelbergGermany
  2. 2.Max-Planck-Institut für Extraterrestrische PhysikGarchingGermany
  3. 3.ESACMadridSpain
  4. 4.Instituut voor SterrenkundeK.U. LeuvenLeuvenBelgium
  5. 5.Konkoly ObservatoryBudapestHungary
  6. 6.IRAMGranadaSpain
  7. 7.CEASaclayFrance

Personalised recommendations