Experimental Astronomy

, 31:243 | Cite as

Using Java for distributed computing in the Gaia satellite data processing

  • William O’Mullane
  • Xavier Luri
  • Paul Parsons
  • Uwe Lammers
  • John Hoar
  • Jose Hernandez
Short Communication


In recent years Java has matured to a stable easy-to-use language with the flexibility of an interpreter (for reflection etc.) but the performance and type checking of a compiled language. When we started using Java for astronomical applications around 1999 they were the first of their kind in astronomy. Now a great deal of astronomy software is written in Java as are many business applications. We discuss the current environment and trends concerning the language and present an actual example of scientific use of Java for high-performance distributed computing: ESA’s mission Gaia. The Gaia scanning satellite will perform a galactic census of about 1,000 million objects in our galaxy. The Gaia community has chosen to write its processing software in Java. We explore the manifold reasons for choosing Java for this large science collaboration. Gaia processing is numerically complex but highly distributable, some parts being embarrassingly parallel. We describe the Gaia processing architecture and its realisation in Java. We delve into the astrometric solution which is the most advanced and most complex part of the processing. The Gaia simulator is also written in Java and is the most mature code in the system. This has been successfully running since about 2005 on the supercomputer “Marenostrum” in Barcelona. We relate experiences of using Java on a large shared machine. Finally we discuss Java, including some of its problems, for scientific computing.


Distributed computing Java Astrometry Cloud computing Mathematics 


  1. 1.
    Bombrum, A., Lindegren, L., Holl, B., Jordan, S.: Complexity of the Gaia astrometric leastsquares problem and the (non-)feasibility of a direct solution method. Astron. Astrophys. 516, A77 (2010). doi: 10.1051/0004-6361/200913503 ADSCrossRefGoogle Scholar
  2. 2.
    ESA: The Hipparcos and Tycho Catalogues. ESA, ESA SP-1200 (1997)Google Scholar
  3. 3.
    Brooks, F.P. Jr.: No silver bullet essence and accidents of software engineering. Computer 20, 10–19 (1987). doi: 10.1109/MC.1987.1663532 CrossRefGoogle Scholar
  4. 4.
    Hernandez, J., O’Mullane, W., Huc, C.: Language Recommendation for the DPAC. Tech. Rep., European Space Astronomy Centre, Villafranca, Madrid. (2006)
  5. 5.
    Kahan, W., Darcy, J.: How Java’s Floating-Point Hurts Everyone Everywhere. Tech. Rep., Elect. Eng. & Computer Science, University of California at Berkely. Keynote presented at ACM 1998 Workshop on Java for High-Performance Network Computing held at Standford University. (1998)
  6. 6.
    Klioner, S.A.: A practical relativistic model for microarcsecond astrometry in space. Astrophys. J. 125, 1580–1597 (2003)ADSGoogle Scholar
  7. 7.
    Makarov, V.V.: Absolute measurements of trigonometric parallaxes with astrometric satellites. Astron. Astrophys. 340, 309–314 (1998)ADSGoogle Scholar
  8. 8.
    Murray, C.A.: Vectorial Astrometry. Adam Hilger, Bristol (1983)Google Scholar
  9. 9.
    O’Mullane, W., Lindegren, L.: An object-oriented framework for GAIA data processing. Balt. Astron. 8, 57–72 (1999)ADSGoogle Scholar
  10. 10.
    O’Mullane,W., Hazell, A., Bennett, K., Bartelmann, M., Vuerli, C.: ESA survey missions and global processing. In: Manset, N., Veillet, C., Crabtree, D. (eds.) Astronomical Data Analysis Software and Systems IX, Astronomical Society of the Pacific Conference Series, vol. 216, pp. 419–422 (2000)Google Scholar
  11. 11.
    O’Mullane, W., Lammers, U., Bailer-Jones, C., Bastian, U., Brown, A.G.A., Drimmel, R., Eyer, L., Huc, C., Katz, D., Lindegren, L., Pourbaix, D., Luri, X., Torra, J., Mignard, F., van Leeuwen, F.: Gaia data processing architecture. In: Shaw, R.A., Hill, F., Bell, D.J. (eds.) Astronomical Data Analysis Software and Systems XVI, Astronomical Society of the Pacific Conference Series, vol. 376, pp. 99–108 (2007)Google Scholar
  12. 12.
    Perryman, M.A.C., de Boer, K.S., Gilmore, G., Høg, E., Lattanzi, M.G., Lindegren, L., Luri, X., Mignard, F., Pace, O., de Zeeuw, P.T.: GAIA: composition, formation and evolution of the Galaxy. Astron. Astrophys. 369, 339–363 (2001). doi: 10.1051/0004-6361:20010085. arXiv:astro-ph/0101235 Google Scholar
  13. 13.
    Shiers, J.: Grid today, clouds on the horizon. Comput. Phys. Commun. 180(4), 559–563 (2009). doi: 10.1016/j.cpc.2008.11.027. Special issue based on the Conference on Computational Physics 2008—CCP 2008
  14. 14.
    Wieprecht, E., Brumfit, J., Bakker, J., de Candussio, N., Guest, S., Huygen, R., de Jonge, A., Matthieu, J.J., Osterhage, S., Ott, S., Siddiqui, H., Vandenbussche, B., de Meester, W., Wetzstein, M., Wiezorrek, E., Zaal, P.: The HERSCHEL/PACS common software system as data reduction system. In: Ochsenbein, F., Allen, M.G., Egret, D. (eds.) Astronomical Data Analysis Software and Systems (ADASS) XIII, Astronomical Society of the Pacific Conference Series, vol. 314, pp. 376–379 (2004)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • William O’Mullane
    • 1
  • Xavier Luri
    • 2
  • Paul Parsons
    • 3
  • Uwe Lammers
    • 1
  • John Hoar
    • 1
  • Jose Hernandez
    • 1
  1. 1.Space Robotic Exploration, European Space Astronomy CentreMadridSpain
  2. 2.ICC-UB/IEEC, Departament d’Astronomia i MeteorologiaUniversitat of BarcelonaBarcelonaSpain
  3. 3.The Server LabsMadridSpain

Personalised recommendations