Experimental Astronomy

, 31:157 | Cite as

A fast 2D image reconstruction algorithm from 1D data for the Gaia mission

  • Diana L. Harrison
Original Article


A fast 2-dimensional image reconstruction method is presented, which takes as input 1-dimensional data acquired from scans across a central source in different orientations. The resultant reconstructed images do not show artefacts due to non-uniform coverage in the orientations of the scans across the central source, and are successful in avoiding a high background due to contamination of the flux from the central source across the reconstructed image. Due to the weighting scheme employed this method is also naturally robust to hot pixels. This method was developed specifically with Gaia data in mind, but should be useful in combining data with mismatched resolutions in different directions.


Methods Data analysis 



Simulated data provided by the Simulation Unit (CU2) of the Gaia Data Processing Analysis Consortium (DPAC) have been used to complete this work. The simulations have been done at CNES (Centre national d’études spatiales). They are gratefully acknowledged for this contribution.


  1. 1.
    Babusiaux, C.: The Gaia instrument and basic image simulator. In: Turon, C., O’Flaherty, K.S., Perryman, M.A.C. (eds.) The Three-Dimensional Universe with Gaia, vol. 576, p. 417. ESA Special Publication (2005)Google Scholar
  2. 2.
    Babusiaux, C., Sartoretti, P., Leclerc, N., Chereau, F., Weller, M.: The Gaia instrument and basic image simulator GIBIS 8.0—user guide (GAIA-C2-SP-OPM-CB-003). (2010)
  3. 3.
    Fruchter, A.S., Hook, R.N.: Drizzle: a method for the linear reconstruction of undersampled images. Publ. Astron. Soc. Pac. 114, 144–152 (2002). doi: 10.1086/338393 ADSCrossRefGoogle Scholar
  4. 4.
    Lindegren, L., Babusiaux, C., Bailer-Jones, C., Bastian, U., Brown, A.G.A., Cropper, M., Høg, E., Jordi, C., Katz, D., van Leeuwen, F., Luri, X., Mignard, F., de Bruijne, J.H.J., Prusti, T.: The Gaia mission: science, organization and present status. In: Jin, W.J., Platais, I., Perryman, M.A.C. (eds.) IAU Symposium, vol. 248, pp. 217–223 (2008). doi: 10.1017/S1743921308019133
  5. 5.
    Lindstroem, H., Mary, D., Høg, E.: Simulations of image reconstruction with the Gaia-3 sky mapper windows (GAIA-C5-TN-ARI-HLI-002-1). (2006)
  6. 6.
    Mary, D., Høg, E., Lindstroem, H., Bastian, U.: Updated simulation of SM image reconstruction (GAIA-C5-TN-ARI-DM-002-1). (2006)
  7. 7.
    Mignard, F.: Overall science goals of the Gaia mission. In: Turon, C., O’Flaherty, K.S., Perryman, M.A.C. (eds.) The Three-Dimensional Universe with Gaia, vol. 576, p. 5. ESA Special Publication (2005)Google Scholar
  8. 8.
    Mignard, F., Bailer-Jones, C., Bastian, U., Drimmel, R., Eyer, L., Katz, D., van Leeuwen, F., Luri, X., O’Mullane, W., Passot, X., Pourbaix, D., Prusti, T.: Gaia: organisation and challenges for the data processing. In: Jin, W.J., Platais, I., Perryman, M.A.C. (eds.) IAU Symposium, vol. 248, pp. 224–230 (2008). doi: 10.1017/S1743921308019145
  9. 9.
    Nurmi, P.: Combining Gaia windows: the method and simulations. Astrophys. Space Sci. 298, 559–575 (2005). doi: 10.1007/s10509-005-2309-x ADSCrossRefGoogle Scholar
  10. 10.
    van Leeuwen, F.: Validation of the new Hipparcos reduction. Astron. Astrophys. 474, 653–664 (2007). doi: 10.1051/0004-6361:20078357 ADSCrossRefGoogle Scholar
  11. 11.
    van Leeuwen, F., Morgan, A.N., Harrison, D.L.: Optimizing point-source parameters for scanning satellite surveys. Mon. Not. R. Astron. Soc. 398, 2074–2084 (2009). doi: 10.1111/j.1365-2966.2009.15253.x ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Astronomy & Kavli Institute for CosmologyUniversity of CambridgeCambridgeUK

Personalised recommendations