Advertisement

Experimental Astronomy

, Volume 32, Issue 1, pp 19–35 | Cite as

Fundamental physics and absolute positioning metrology with the MAGIA lunar orbiter

  • Simone Dell’Agnello
  • Caterina Lops
  • Giovanni O. Delle Monache
  • Douglas G. Currie
  • Manuele Martini
  • Roberto Vittori
  • Angioletta Coradini
  • Cesare Dionisio
  • Marco Garattini
  • Alessandro Boni
  • Claudio Cantone
  • Riccardo March
  • Giovanni Bellettini
  • Roberto Tauraso
  • Mauro Maiello
  • Luca Porcelli
  • Simone Berardi
  • Nicola Intaglietta
Original Article

Abstract

MAGIA is a mission approved by the Italian Space Agency (ASI) for Phase A study. Using a single large-diameter laser retroreflector, a large laser retroreflector array and an atomic clock onboard MAGIA we propose to perform several fundamental physics and absolute positioning metrology experiments: VESPUCCI, an improved test of the gravitational redshift in the Earth–Moon system predicted by General Relativity; MoonLIGHT-P, a precursor test of a second generation Lunar Laser Ranging (LLR) payload for precision gravity and lunar science measurements under development for NASA, ASI and robotic missions of the proposed International Lunar Network (ILN); Selenocenter (the center of mass of the Moon), the determination of the position of the Moon center of mass with respect to the International Terrestrial Reference Frame/System (ITRF/ITRS); this will be compared to the one from Apollo and Lunokhod retroreflectors on the surface; MapRef, the absolute referencing of MAGIA’s lunar altimetry, gravity and geochemical maps with respect to the ITRF/ITRS. The absolute positioning of MAGIA will be achieved thanks to: (1) the laboratory characterization of the retroreflector performance at INFN-LNF; (2) the precision tracking by the International Laser Ranging Service (ILRS), which gives two fundamental contributions to the ITRF/ITRS, i.e. the metrological definition of the geocenter (the Earth center of mass) and of the scale of length; (3) the radio science and accelerometer payloads; (4) support by the ASI Space Geodesy Center in Matera, Italy. Future ILN geodetic nodes equipped with MoonLIGHT and the Apollo/Lunokhod retroreflectors will become the first realization of the International Moon Reference Frame (IMRF), the lunar analog of the ITRF.

Keywords

LLR SLR Gravitational redshift Lunar science ILN Tests of general relativity 

Notes

Acknowledgements

In support of the research at Frascati, we wish to acknowledge the support of the Italian INFN-LNF, granted since the LSSO project, MoonLIGHT-M(anned) (Currie 2006, Dell’Agnello 2007). We also wish to thank the support of ASI during the 2007 lunar studies and the 2008 Phase A study for MAGIA. We warmly thank Sylvie Espinasse, formerly at ASI, now at ESA, for encouraging the lunar science applications of our work within the ILN. D. G. Currie would also like to acknowledge helpful conversations with Jack Schmidt, Ken Nordtvedt and Ed Aaron. We wish to acknowledge the support of the University of Maryland via the NASA LSSO program (Contract NNX07AV62G) to investigate Lunar Science for the NASA Manned Lunar Surface Science and the LUNAR consortium (http://lunar.colorado.edu), headquartered at the University of Colorado, which is funded by the NASA Lunar Science Institute (via Cooperative Agreement NNA09DB30A) to investigate concepts for astrophysical observatories on the Moon.

References

  1. 1.
    Alley, C.O. et al.: In: Bertotti, B. (ed.) Experimental Gravitation, Proceedings of the Conference at Pavia, Italy (September 1976). Academic, New York (1977)Google Scholar
  2. 2.
    Altamimi, Z., Collilieux, X., Legrand, J., et al.: ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J. Geophys. Res. 112(B9), B09401 (2007)CrossRefGoogle Scholar
  3. 3.
    Bosco, A., et al.: Probing gravity in NEOs with high-accuracy laser-ranged test masses. Int. J. Mod. Phys. D. 16(12A), 2271–2285 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Coradini, A., et al.: Missione Altimetrica Gravimetrica geochImica lunAre (MAGIA): an Italian mission for the geodesy, geophysics and geochemistry of the Moon. Earth, Moon and Planets (2010, submitted)Google Scholar
  5. 5.
    Currie, D.G., et al.: MoonLIGHT-M, NASA LSSO proposal (2006), INFN-LNF Report LNF-06-2 8(IR), http://www.lnf.infn.it/sis/preprint/pdf/getfile.php?filename=LNF-06-28(IR).pdf
  6. 6.
    Currie, D.G., et al.: AMOS Technical Conference (2009), Paper # 4132364Google Scholar
  7. 7.
    Dell’Agnello, S., et al.: MoonLIGHT-R, ASI Lunar Study (2007), INFN-LNF Report LNF-06-2 8(IR), http://www.lnf.infn.it/sis/preprint/pdf/getfile.php?filename=LNF-07-2(IR).pdf
  8. 8.
    Dell’Agnello, S., et al.: Creation of the industry-standard space test of laser retroreflectors for GNSS, fundamental physics and space geodesy: the “SCF-Test”. In: Proceedings of the “16th International Workshop on Laser Ranging”, Poznan, Poland (2008)Google Scholar
  9. 9.
    Dell’Agnello, S., et al.: A lunar laser ranging array for NASA’s manned landings, the international lunar network and the proposed ASI lunar mission MAGIA. In: Proceedings of the “16th International Workshop on Laser Ranging”, Poznan, Poland (2008)Google Scholar
  10. 10.
    Dick, W.R., Richter, B.: The international earth rotation and reference systems service (IERS). In: Heck, A. (ed.) Organizations and Strategies in Astronomy, 5, (Astrophysics and Space Science Library, 310), pp. 159–168. Kluwer, Dordrecht, Boston, London (2004)Google Scholar
  11. 11.
    Dvali, G., Gruzinov, A., Zaldarriaga, M.: The accelerated universe and the moon. Phys. Rev. D 68, 024012 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Fermi, M., Gregnanin, M., Mazzolena, M., Chersich, M., Reguzzoni, M., Sansò, F.: The lunar gravity mission MAGIA: preliminary design and performances. Exp. Astron. doi: 10.1007/s10686-010-9188-z
  13. 13.
    Flanagan, E.E., Rosenthal, E.: Can gravity probe b usefully constrain torsion gravity theories? Phys. Rev. D 75, 124016 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Geodesist’s Handbook: Bulletin Geodesique, 66. Springer, Berlin (1992)Google Scholar
  15. 15.
    Iafolla, V., Peron, R.: Italian Spring Accelerometer: accelerometric techniques and Moon geodesy and gravimetry. Experimental Astronomy (2010, submitted)Google Scholar
  16. 16.
    Mao, Y., Tegmark, M., Guth, A., Cabi, S.: Constraining torsion with gravity probe B. Phys. Rev. D 76, 104029 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    March, R., Bellettini, G., Tauraso, R., Dell’Agnello, S.: Constraining spacetime torsion with the Moon and Mercury. Phys. Rev. D (2010, submitted)Google Scholar
  18. 18.
    Merkowitz, S.M., et al.: The Moon as a Test Body for General Relativity, A White Paper submitted to the Planetary Science Decadal Survey, September 2009, http://www8.nationalacademies.org/ssbsurvey/DetailFileDisplay.aspx?id=60
  19. 19.
    Morgan, T., Satoshi, T., Williamson, M., Bindsted, K., Hipkin, V., Spohn, T., Sreekumar, P., Dell’Agnello, S., Choi, Y., Choi, G., Min, K.W., Banerdt, B., Wieczorek, M., Garcia, R.: International Lunar Network Core Instruments Working Group: Final Report (2009)Google Scholar
  20. 20.
    Murphy, T.W., et al.: The Apache Point Observatory Lunar Laser-Ranging Operation (APOLLO): two-years of millimeter precision measurements of the earth–moon range. Publ. Astron. Soc. Pac. 120, 20 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Neal, C.R.: The Rationale or Deploying a Long-Lived Geophysical Network on the Moon, A White Paper submitted to the Planetary Science Decadal Survey, September 2009, http://www8.nationalacademies.org/ssbsurvey/DetailFileDisplay.aspx?id=128
  22. 22.
    Pearlman, M.R., Degnan, J.J., Bosworth, J.M.: The international laser ranging service. Adv. Space Res. 30(2), 135–143 (2002), doi: 10.1016/S0273-1177(02)00277-6 ADSCrossRefGoogle Scholar
  23. 23.
    Vessot, R.F.C., et al.: Test of relativistic gravitation with a space borne hydrogen maser. Phys. Rev. Lett. 45, 2081–2084 (1980)ADSCrossRefGoogle Scholar
  24. 24.
    Will, C.M.: The confrontation between general relativity and experiment. Living Reviews of General Relativity 9(3), 14 (2006); gr-qc/0510072Google Scholar
  25. 25.
    Williams, J.G., et al.: Progress in lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett. 93, 261101 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    Williams, J.G., et al.: Lunar laser ranging science: gravitational physics and lunar interior and geodesy. Adv. Space Res. 37, 67–71 (2006), http://arxiv.org/abs/gr-qc/0412049 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Simone Dell’Agnello
    • 1
  • Caterina Lops
    • 1
  • Giovanni O. Delle Monache
    • 1
  • Douglas G. Currie
    • 2
  • Manuele Martini
    • 1
  • Roberto Vittori
    • 3
  • Angioletta Coradini
    • 4
  • Cesare Dionisio
    • 5
  • Marco Garattini
    • 1
  • Alessandro Boni
    • 1
  • Claudio Cantone
    • 1
  • Riccardo March
    • 6
  • Giovanni Bellettini
    • 7
  • Roberto Tauraso
    • 7
  • Mauro Maiello
    • 1
  • Luca Porcelli
    • 1
  • Simone Berardi
    • 1
  • Nicola Intaglietta
    • 1
  1. 1.INFN—Laboratori Nazionali di Frascati (LNF)FrascatiItaly
  2. 2.Department of PhysicsUniversity of Maryland (UMD)College ParkUSA
  3. 3.Aeronautica Militare ItalianaRomeItaly
  4. 4.INAF—Istituto di Fisica dello Spazio Interplanetario (IFSI)RomeItaly
  5. 5.Rheinmetall Italia S.p.A.RomeItaly
  6. 6.INFN—LNF and CNR-Istituto per le Applicazioni del Calcolo (IAC)RomeItaly
  7. 7.INFN—LNF and Department of MathematicsUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations