Skip to main content
Log in

GPU accelerated radio astronomy signal convolution

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The increasing array size of radio astronomy interferometers is causing the associated computation to scale quadratically with the number of array signals. Consequently, efficient usage of alternate processing architectures should be explored in order to meet this computational challenge. Affordable parallel processors have been made available to the general scientific community in the form of the commodity graphics card. This work investigates the use of the Graphics Processing Unit in the parallelisation of the combined conjugate multiply and accumulation stage of a correlator for a radio astronomy array. Using NVIDIA’s Compute Unified Device Architecture, our testing shows processing speeds from one to two orders of magnitude faster than a Central Processing Unit approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Venkatasubramanian, S.: The graphics card as a stream computer. In: SIGMOD-DIMACS Workshop on Management and Processing of Data Streams. San Diego, June (2003)

  2. Fernando, R. (ed.): GPU Gems: Programming Techniques, Tips, and Tricks for Real-Time Graphics. Addison-Wesley (2004)

  3. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26(1), 80 (2007)

    Article  Google Scholar 

  4. Coombe, G., Harris, M.J., Lastra, A.: Radiosity on graphics hardware. In: Graphics Interface, pp. 161–168. London, 17–19 May (2004)

  5. Moreland, K., Angel, E.: The FFT on a GPU. In: Graphics Hardware. San Diego, July (2003)

  6. Purcell, T.J., Buck, I., Mark, W.R., Hanrahan, P.: Ray tracing on programmable graphics hardware. ACM Trans. Graph. 21(3), 703 (2002)

    Article  Google Scholar 

  7. NVIDA: CUDA Programming Guide 1.0. (2007)

  8. Romney, J.D.: Cross correlators. Astron. Soc. Pac. Conf. Ser. 180 (1999)

  9. Starck, J.L., Pantin, E., Murtagh, F.: Deconvolution in astronomy: a review. Publ. Astron. Soc. Pac. 114, 1051 (2002)

    Article  ADS  Google Scholar 

  10. Deller, A.T., Tingay, S.J., Bailes, M., West, C.: DiFX: A software correlator for very long baseline interferometry using multi-processor computing environments. Astro-ph/0702141 (2007)

  11. B.J.D., et al.: Field deployment of prototype antenna tiles for the Mileura Widefield Array low frequency demonstrator. ArXiv:astro-ph/0611751 133, 1505 (2007)

  12. Schaaf, K., Overeem, R.: Cots correlator platform. Exp. Astron. 17(1–3), 287 (2004)

    Article  ADS  Google Scholar 

  13. Harrison, O., Waldron, J.: Optimising data movement rates for parallel processing applications on graphics processors. In: Parallel and Distributed Computing and Networks. Innsbruck, 13–15 February (2007)

  14. Fung, W.W.L., Sham, I., Yuan, G., Aamodt, T.M.: Dynamic warp formation and scheduling for efficient GPU control flow. In: MICRO ’07: Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 407–420. IEEE Computer Society, Washington, DC (2007)

    Google Scholar 

Download references

Acknowledgements

The authors thank Frank Briggs for providing Fortran code of a FX correlator, which was used as a reference for both the CPU and GPU implementations. The authors thank Paul Bourke for producing the diagrams in Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, C., Haines, K. & Staveley-Smith, L. GPU accelerated radio astronomy signal convolution. Exp Astron 22, 129–141 (2008). https://doi.org/10.1007/s10686-008-9114-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-008-9114-9

Keywords

Navigation