Advertisement

Experimental Astronomy

, Volume 20, Issue 1–3, pp 375–386 | Cite as

Monte Carlo study of detector concepts for the MAX Laue lens gamma-ray telescope

  • G. Weidenspointner
  • C. B. Wunderer
  • N. Barrière
  • A. Zoglauer
  • P. von Ballmoos
Original Article
  • 43 Downloads

Abstract

MAX is a proposed Laue lens gamma-ray telescope taking advantage of Bragg diffraction in crystals to concentrate incident photons onto a distant detector. The Laue lens and the detector are carried by two separate satellites flying in formation. Significant effort is being devoted to studying different types of crystals that may be suitable for focusing gamma rays in two 100 keV wide energy bands centered on two lines which constitute the prime astrophysical interest of the MAX mission: the 511 keV positron annihilation line, and the broadened 847 keV line from the decay of 56Co copiously produced in Type Ia supernovae. However, to optimize the performance of MAX, it is also necessary to optimize the detector used to collect the source photons concentrated by the lens. We address this need by applying proven Monte Carlo and event reconstruction packages to predict the performance of MAX for three different Ge detector concepts: a standard coaxial detector, a stack of segmented detectors, and a Compton camera consisting of a stack of strip detectors. Each of these exhibits distinct advantages and disadvantages regarding fundamental instrumental characteristics such as detection efficiency or background rejection, which ultimately determine achievable sensitivities. We conclude that the Compton camera is the most promising detector for MAX in particular, and for Laue lens gamma-ray telecopes in general.

Keywords

Gamma-rays Laue lens Germanium detectors Compton telescopes Nuclear lines Positron annihilation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrosimov, N., et al.: Exp. Astron. 20, DOI: 10.1007/s10686-006-9025-6 (2006)Google Scholar
  2. Barrière, N., et al.: Exp. Astron. 20, DOI: 10.1007/s10686-006-9058-x (2006)Google Scholar
  3. Boggs, S.E., et al.: New Astron. Rev., in press (2006a)Google Scholar
  4. Boggs, S.E., et al.: Exp. Astron. 20, DOI: 10.1007/s10686-006-9051-4 (2006b)Google Scholar
  5. Brun, R.: GEANT Detector Description and Simulation Tool, CERN Program Library Long Writeup W5013, http://wwwinfo.cern.ch/asd/geant/ (1995)
  6. Courtois, P., et al.: Exp. Astron. 20, DOI: 10.1007/s10686-005-9018-x (2006)Google Scholar
  7. Gruber, D.E., et al.: ApJ 520, 124 (1999)CrossRefADSGoogle Scholar
  8. Halloin, H., et al.: In Proc. SPIE 5168, 471 (2004)Google Scholar
  9. Halloin, H.: Exp. Astron. 20, DOI: 10.1007/s10686-006-9063-0 (2006)Google Scholar
  10. Halloin, H., Bastie, P.: Exp. Astron. 20, DOI: 10.1007/s10686-006-9064-z (2006)Google Scholar
  11. Kanbach, G., et al.: New Astron. Rev. 48, 275 (2004)CrossRefADSGoogle Scholar
  12. Kippen, M.: New Astron. Rev. 48, 221 (2004)CrossRefADSGoogle Scholar
  13. Knödlseder, J.: Exp. Astron. 20, DOI: 10.1007/s10686-006-9031-8 (2006)Google Scholar
  14. Lei, F., et al.: Space Sci. Rev. 82, 309 (1997)CrossRefADSGoogle Scholar
  15. Lonjou, V., et al.: NIM A 554, 320 (2005)ADSCrossRefGoogle Scholar
  16. Lund, N.: Exp. Astron. 2, 259 (1992)MathSciNetCrossRefADSGoogle Scholar
  17. McConnell, M.L., Kippen, R.M.: AAS, HEAD Meeting #8, #41.01 (2004)Google Scholar
  18. Moskalenko, I., et al.: ApJ 565, 280 (2002)CrossRefADSGoogle Scholar
  19. Owens, A., et al.: Space Sc. Rev. 71, 273 (1995)CrossRefADSGoogle Scholar
  20. Prantzos, N.: In Proc. of 5th INTEGRAL Science Workshop (ESA SP-552), 15 (2005)Google Scholar
  21. Schönfelder, V., et al.: ApJS 86, 657 (1993)CrossRefADSGoogle Scholar
  22. Smither, R.K., et al.: Exp. Astron. 6, 47 (1995)CrossRefADSGoogle Scholar
  23. Smither, R.K., et al.: Exp. Astron. 20, DOI: 10.1007/s10686-005-9019-9 (2006)Google Scholar
  24. von Ballmoos, P., et al.: New Astron. Rev. 48, 243 (2004)CrossRefADSGoogle Scholar
  25. von Ballmoos, P., et al.: Exp. Astron. 20, DOI: 10.1007/s10686-006-9071-0 (2006)Google Scholar
  26. Weidenspointner, G., et al.: A&A 411, L113 (2003)CrossRefADSGoogle Scholar
  27. Weidenspointner, G., et al.: ApJS, 69 (156) (2005)Google Scholar
  28. Weidenspointner, G.: In Proc. of Population of High Energy Sources in Galaxies (230. IAU Symposium) (2006) Meurs, E.J.A., Fabbiano, A. (eds.), astro-ph/0601312Google Scholar
  29. Wunderer, C., et al.: In Proc. of 5th INTEGRAL Science Workshop (ESA SP-552), 913 (2004)Google Scholar
  30. Wunderer, C., et al.: New Astron. Rev., in press (2006a)Google Scholar
  31. Wunderer, C., et al.: Exp. Astron. 20, DOI: 10.1007/s10686-006-9034-5 (2006b)Google Scholar
  32. Zoglauer, A.: First Light for the Next Generation of Compton and Pair Telescopes (dissertation), TU München (2005)Google Scholar
  33. Zoglauer, A., et al.: New Astron. Rev., in press (2006)Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • G. Weidenspointner
    • 1
  • C. B. Wunderer
    • 2
  • N. Barrière
    • 1
  • A. Zoglauer
    • 2
  • P. von Ballmoos
    • 1
  1. 1.Centre d’Etude Spatiale des RayonnementsToulouse Cedex 4France
  2. 2.Space Science LaboratoryBerkeleyUSA

Personalised recommendations