Skip to main content

Advertisement

Log in

Model-based riverscape genetics: disentangling the roles of local and connectivity factors in shaping spatial genetic patterns of two Amazonian turtles with different dispersal abilities

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Genetic patterns are shaped by the interaction of different factors such as distance, barriers, landscape resistance and local environment. The relative importance of these processes may vary for species with different ecological traits. Here we compared two related Amazonian riverine turtle species (Podocnemis erythrocephala and Podocnemis sextuberculata) with distinct dispersal abilities to assess how differently local and connectivity variables influence their genetic patterns. We used a total of 609 genetic samples to estimate mitochondrial (mtDNA) genetic diversity and differentiation for each locality. We applied model selection on models associating genetic diversity to local variables representing hypotheses of climate and primary productivity, water level variation, hunting pressure and downstream increase in genetic diversity. We modeled the relationship of genetic differentiation with connectivity variables representing hypotheses of isolation by distance (IBD), isolation by resistance (IBR) and isolation by barrier (IBB). Model selection for genetic diversity was only important (excluded the null model) for the high-dispersal species (P. sextuberculata), with best models including hypotheses of productivity and hunting pressure. Genetic diversity was higher in more productive sites and in sites with higher concentration of villages (opposed to expected). Although a variable importance testing showed low importance for connectivity models, IBB (Amazon River) and IBR (resistance by current and past climatic suitability and river color) models explained more genetic differentiation turnover than IBD (riverway distance). Models explained a higher percentage of genetic differentiation for the low-dispersal species (P. erythrocephala), with Amazon River as main predictor. We show that, although local variables are often overlooked in riverscape genetics studies, they can influence intrapopulacional genetic diversity of aquatic species, even those with high dispersal ability. By applying a resistance-model framework and by using riverscape genetics factors relevant in basin-wide context, we provide a novel approach to investigate genetic patterns of other aquatic vertebrates in fluvial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcântara AS, Félix-Silva D, Pezzuti JCB (2013) Effects of the hydrological cycle and human settlements on the population status of Podocnemis unifilis (Testudines: Podocnemididae) in the Xingu River, Brazil. Chelonian Conserv Biol 12:134–142

    Article  Google Scholar 

  • Alho CJR, Pádua LFM (1982) Sincronia entre o regime de vazante do rio e o comportamento de nidificaçào da tartaruga da Amazônia Podocnemis expansa (Testudines: Pelomedusidae). Acta Amazon 12(2):323–326

    Article  Google Scholar 

  • Allendorf FW, England PR, Luikart G et al (2008) Genetic effects of harvest on wild animal populations. Trends Ecol Evol 23:327–337

    Article  PubMed  Google Scholar 

  • Balkenhol N, Cushman SA, Storfer A et al (2016) Introduction to landscape genetics—concepts, methods, applications. In: Balkenhol N, Cushman SA, Storfer A et al (eds) Landscape genetics: concepts, methods, applications, vol 1. Wiley, West Sussex, pp 1–8

    Google Scholar 

  • Batistella AM, Vogt RC (2008) Nesting ecology of Podocnemis erythrocephala (Testudines, Podocnemididae) of the Rio Negro, Amazonas, Brazil. Chelonian Conserv Biol 7:12–20

    Article  Google Scholar 

  • Beheregaray LB, Cooke G, Chao N et al (2015) Ecological speciation in the tropics: insights from comparative genetic studies in Amazonia. Front Genet 5:1–19

    Article  Google Scholar 

  • Bermudez-Romero AL, Castelblanco-Martínez N, Bernhard R et al (2015) Nesting habitat of the ‘cupiso’ Podocnemis sextuberculata (Testudines: Podocnemididae) in Erepecu Lake (Pará-Brazil). Acta Biol Colomb 20:183–191

    Google Scholar 

  • Bernardes VCD, Ferrara CR, Vogt RC et al (2014) Abundance and population structure of Podocnemis erythrocephala (Testudines, Podocnemididae) in the Unini River, Amazonas. Chelonian Conserv Biol 13:89–95

    Article  Google Scholar 

  • Bernhard R (2010) Dinâmica populacional de Podocnemis erythrocephala, no rio Ayuanã, Amazonas, Brasil. PhD Thesis, INPA

  • Burnham KP, Anderson DR (2003) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Caldera EJ, Bolnick DI (2008) Effects of colonization history and landscape structure on genetic variation within and among threespine stickleback (Gasterosteus aculeatus) populations in a single watershed. Evol Ecol Res 10:575–598

    Google Scholar 

  • Cantanhede A, Da Silva V, Ferreira M et al (2005) Phylogeography and population genetics of the endangered Amazonian manatee, Trichechus inunguis Natterer, 1883 (Mammalia, Sirenia). Mol Ecol 14:401–413

    Article  CAS  PubMed  Google Scholar 

  • Carnaval AC, Hickerson MJ, Haddad CF, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323:785–789

    Article  CAS  PubMed  Google Scholar 

  • Carnaval AC, Waltari E, Rodrigues MT et al (2014) Prediction of phylogeographic endemism in an environmentally complex biome. Proc R Soc Lond B Biol Sci 281:20141461

    Article  Google Scholar 

  • Conway-Gómez K (2007) Effects of human settlements on abundance of Podocnemis unifilis and P. expansa turtles in northeastern Bolivia. Chelonian Conserv Biol 6:199–205

    Article  Google Scholar 

  • Cook BD, Kennard MJ, Real K et al (2011) Landscape genetic analysis of the tropical freshwater fish Mogurnda mogurnda (Eleotridae) in a monsoonal river basin: importance of hydrographic factors and population history. Freshw Biol 56:812–827

    Article  Google Scholar 

  • Corander J, Marttinen P, Sirén J et al (2006) BAPS: Bayesian analysis of population structure, Manual v. 4.1. Department of Mathematics, University of Helsinki

  • Davis CD, Epps CW, Flitcroft RL, Banks MA (2018) Refining and defining riverscape genetics: how rivers influence population genetic structure. WIREs Water 5:e1269

    Article  Google Scholar 

  • De Thoisy B, Hrbek T, Farias IP et al (2006) Genetic structure, population dynamics, and conservation of Black caiman (Melanosuchus niger). Biol Conserv 133:474–482

    Article  Google Scholar 

  • Dileo MF, Wagner HH (2016) A landscape ecologist’s agenda for landscape genetics. Curr Lands Ecol Rep 1:115–126

    Article  Google Scholar 

  • Domisch S, Amatulli G, Jetz W (2015) Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci Data 2:1–13

    Article  CAS  Google Scholar 

  • Ellegren H, Galtier N (2016) Determinants of genetic diversity. Nat Rev Genet 17:422–433

    Article  CAS  PubMed  Google Scholar 

  • Epps CW, Keyghobadi N (2015) Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol Ecol 24:6021–6040

    Article  PubMed  Google Scholar 

  • Epps CW, Palsbøll PJ, Wehausen JD et al (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038

    Article  Google Scholar 

  • Escalona T, Engstrom TN, Hernandez O et al (2009) Population genetics of the endangered South American freshwater turtle, Podocnemis unifilis, inferred from microsatellite DNA data. Conserv Genet 10:1683–1696

    Article  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fachin-Terán A, Vogt RC (2014) Alimentación de Podocnemis Sextuberculata (Testudines: Podocnemididae) en la Reserva Mamirauá, Amazonas, Brasil. Revista Colombiana de Ciencia Animal 6:286–309

    Google Scholar 

  • Fachín-Terán A, Vogt RC, Thorbjarnarson JB (2006) Seasonal movements of Podocnemis sextuberculata (Testudines: Podocnemididae) in the Mamirauá Sustainable Development Reserve, Amazonas, Brazil. Chelonian Conserv Biol 5:18–24

    Article  Google Scholar 

  • Fagundes CK, Vogt RC, De Marco JP (2015) Testing the efficiency of protected areas in the Amazon for conserving freshwater turtles. Divers Distrib 22:123–135

    Article  Google Scholar 

  • Fantin C, Farias I, Monjeló L et al (2010) Polyandry in the red-headed river turtle Podocnemis erythrocephala (Testudines, Podocnemididae) in the Brazilian Amazon. Genet Mol Res 9:435–440

    Article  CAS  PubMed  Google Scholar 

  • Fantin C, Pereira DIM, Ferreira JF et al (2015) Evidence of multiple paternal contribution in Podocnemis sextuberculata (Testudines: Podocnemididae) detected by microsatellite markers. Phyllomedusa 14:89–97

    Article  Google Scholar 

  • Ferrara CR, Fagundes CK, Morcatty TQ et al (2017) Quelônios Amazônicos: Guia de identificação e distribuição. Editora INPA, Manaus

    Google Scholar 

  • Ferrier S, Manion G, Elith J et al (2007) Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers Distrib 13:252–264

    Article  Google Scholar 

  • Fitzpatrick MC, Keller SR (2015) Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol Lett 18:1–16

    Article  PubMed  Google Scholar 

  • Fitzpatrick MC, Sanders NJ, Normand S et al (2013) Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients. Proc R Soc Lond B Biol Sci 280:20131201

    Article  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508

    Article  Google Scholar 

  • Gomez-Uchida D, Knight TW, Ruzzante DE (2009) Interaction of landscape and life history attributes on genetic diversity, neutral divergence and gene flow in a pristine community of salmonids. Mol Ecol 18:4854–4869

    Article  PubMed  Google Scholar 

  • Goodall-Copestake W, Tarling G, Murphy E (2012) On the comparison of population-level estimates of haplotype and nucleotide diversity: a case study using the gene cox1 in animals. Heredity 109:50–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham CH, Moritz C, Williams SE (2006) Habitat history improves prediction of biodiversity in rainforest fauna. PNAS 103(3):632–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gravena W, Silva VM, Silva MN et al (2015) Living between rapids: genetic structure and hybridization in botos (Cetacea: Iniidae: Inia spp.) of the Madeira River, Brazil. Biol J Linn Soc 114:764–777

    Article  Google Scholar 

  • Hand BK, Muhlfeld CC, Wade AA et al (2015) Climate variables explain neutral and adaptive variation within salmonid metapopulations: the importance of replication in landscape genetics. Mol Ecol 25:689–705

    Article  Google Scholar 

  • Hayes FE, JaN S (2004) The Amazon River as a dispersal barrier to passerine birds: effects of river width, habitat and taxonomy. J Biogeogr 31:1809–1818

    Article  Google Scholar 

  • Hijmans R, Cameron S, Parra J et al (2005) WorldClim, version 1.3. University of California, Berkeley

  • Hijmans RJ, Phillips S, Leathwick J et al (2015) dismo: Species distribution modeling. R package version 1.0-12

  • Hrbek T, Farias IP, Crossa M et al (2005) Population genetic analysis of Arapaima gigas, one of the largest freshwater fishes of the Amazon basin: implications for its conservation. Anim Conserv 8:297–308

    Article  Google Scholar 

  • Hughes JM, Schmidt DJ, Finn DS (2009) Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat. BioScience 59(7):573–583

    Article  Google Scholar 

  • Jenkins DG, Carey M, Czerniewska J et al (2010) A meta-analysis of isolation by distance: Relic or reference standard for landscape genetics? Ecography 33:315–320

    Google Scholar 

  • Junk WJ, Piedade MTF, Schöngart J et al (2011) A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31:623–640

    Article  Google Scholar 

  • Kanno Y, Vokoun JC, Letcher BH (2011) Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks. Mol Ecol 20:3711–3729

    Article  PubMed  Google Scholar 

  • Kovach RP, Muhlfeld CC, Wade AA et al (2015) Genetic diversity is related to climatic variation and vulnerability in threatened bull trout. Glob Change Biol 21:2510–2524

    Article  Google Scholar 

  • Kuo C, Janzen FJ (2004) Genetic effects of a persistent bottleneck on a natural population of ornate box turtles (Terrapene ornata). Conserv Genet 5:425–437

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Liggins L, Treml EA, Possingham HP et al (2016) Seascape features, rather than dispersal traits, predict spatial genetic patterns in co-distributed reef fishes. J Biogeogr 43:256–267

    Article  Google Scholar 

  • Malhi Y, Baker TR, Phillips OL et al (2004) The above-ground coarse wood productivity of 104 Neotropical forest plots. Glob Change Biol 10:563–591

    Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G et al (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Manion G, Lisk M, Ferrier S et al (2016) gdm: Functions for Generalized Dissimilarity Modeling. R package.

  • Marsack K, Swanson BJ (2009) A genetic analysis of the impact of generation time and road-based habitat fragmentation on eastern box turtles (Terrapene c. carolina). Copeia 2009:647–652

    Article  Google Scholar 

  • Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazerolle MJ, Mazerolle MMJ (2016) Package ‘AICcmodavg’

  • Mcrae BH (2006) Isolation by resistance. Evolution 60:1551–1561

    Article  PubMed  Google Scholar 

  • Mitchell MW, Locatelli S, Clee PRS et al (2015) Environmental variation and rivers govern the structure of chimpanzee genetic diversity in a biodiversity hotspot. BMC Evol Biol 15:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittermeier RA, Vogt RC, Bernhard R et al (2015) Podocnemis erythrocephala (Spix 1824)—Red-headed Amazon River Turtle, Irapuca. In: Rhodin A, Pritchard P, Van Dijk P, et al (eds) Conservation biology of freshwater turtles and tortoises: a compilation project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group, Chelonian Research Monographs, vol 5, pp 087.081-010

  • Moore J, Miller H, Daugherty C et al (2008) Fine-scale genetic structure of a long-lived reptile reflects recent habitat modification. Mol Ecol 17:4630–4641

    Article  CAS  PubMed  Google Scholar 

  • Murphy M, Evans JS (2011) Genetic patterns as a function of landscape process: applications of neutral genetic markers for predictive modeling in landscape ecology. In: Drew CA, Wiersma YF, Huettmann F (eds) Predictive species and habitat modeling in landscape ecology. Springer, New York, pp 161–188

    Chapter  Google Scholar 

  • Murphy M, Dezzani R, Pilliod D et al (2010) Landscape genetics of high mountain frog metapopulations. Mol Ecol 19:3634–3649

    Article  PubMed  Google Scholar 

  • NASA (2016) Moderate Resolution Imaging Spectroradiometer (MODIS). National Aeronautics and Space Administration. Available from https://modis.gsfc.nasa.gov. Accessed Dec 2016.

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Ortego J, Gugger PF, Sork VL (2015) Climatically stable landscapes predict patterns of genetic structure and admixture in the Californian canyon live oak. J Biogeogr 42:328–338

    Article  Google Scholar 

  • Ouellet-Cauchon G, Mingelbier M, Lecomte F et al (2014) Landscape variability explains spatial pattern of population structure of northern pike (Esox lucius) in a large fluvial system. Ecol Evol 4:3723–3735

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozerov MY, Veselov AE, Lumme J et al (2012) “Riverscape” genetics: river characteristics influence the genetic structure and diversity of anadromous and freshwater Atlantic salmon (Salmo salar) populations in northwest Russia. Can J Fish Aquat Sci 69:1947–1958

    Article  Google Scholar 

  • Pantoja-Lima J, Juárez CBP, Teixeira A et al (2009) Seleção de locais de desova e sobrevivência de ninhos de quelônios Podocnemis no baixo Rio Purus, Amazonas, Brasil. Revista Colombiana de Ciencia Animal 1:37–59

    Article  Google Scholar 

  • Pantoja-Lima J, Aride PH, De Oliveira AT et al (2014) Chain of commercialization of Podocnemis spp. turtles (Testudines: Podocnemididae) in the Purus River, Amazon basin, Brazil: current status and perspectives. J Ethnobiol Ethnomed 10:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Paz-Vinas I, Blanchet S (2015) Dendritic connectivity shapes spatial patterns of genetic diversity: a simulation-based study. J Evol Biol 28:986–994

    Article  CAS  PubMed  Google Scholar 

  • Paz-Vinas I, Loot G, Stevens V et al (2015) Evolutionary processes driving spatial patterns of intra-specific genetic diversity in river ecosystems. Mol Ecol 24:4586–4604

    Article  CAS  PubMed  Google Scholar 

  • Pearse DE, Arndt AD, Valenzuela N et al (2006) Estimating population structure under nonequilibrium conditions in a conservation context: continent-wide population genetics of the giant Amazon River turtle, Podocnemis expansa (Chelonia; Podocnemididae). Mol Ecol 15:985–1006

    Article  CAS  PubMed  Google Scholar 

  • Peres CA (2000) Effects of subsistence hunting on vertebrate community structure in Amazonian forests. Conserv Biol 14:240–253

    Article  Google Scholar 

  • Pezzuti JC, Lima JP, Da Silva DF et al (2010) Uses and taboos of turtles and tortoises along Rio Negro, Amazon Basin. J Ethnobiol 30:153–168

    Article  Google Scholar 

  • Reid BN, Mladenoff DJ, Peery MZ (2017) Genetic effects of landscape, habitat preference, and demography on three co-occurring turtle species. Mol Ecol 26:781–798

    Article  PubMed  Google Scholar 

  • Richardson JL (2012) Divergent landscape effects on population connectivity in two co-occurring amphibian species. Mol Ecol 21:4437–4451

    Article  PubMed  Google Scholar 

  • Salzburger W, Ewing GB, Von Haeseler A (2011) The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol Ecol 20:1952–1963

    Article  PubMed  Google Scholar 

  • Santos RC, Viana MNS, LaS M et al (2016) Testing the effects of barriers on the genetic connectivity in Podocnemis erythrocephala (Red-headed Amazon River Turtle): implications for management and conservation. Chelonian Conserv Biol 15:12–22

    Article  Google Scholar 

  • Schneider L, Ferrara CR, Vogt RC, Burger J (2011) History of turtle exploitation and management techniques to conserve turtles in the Rio Negro Basin of the Brazilian Amazon. Chelonian Conserv Biol 10(1):149–157

    Article  Google Scholar 

  • Selkoe KA, Scribner KT, Galindo HM (2016) Waterscape genetics—applications of landscape genetics to rivers, lakes, and seas. In: Balkenhol N, Cushman SA, Storfer A et al (eds) Landscape genetics: concepts, methods, applications, vol 1. Wiley, West Sussex, pp 220–246

    Google Scholar 

  • Silva-Junior UL (2015) Análise dos extremos hidrológicos da bacia Amazônica e modelagem integrada (SNAP/Western Amazon-February 2015)

  • Sioli H (1984) The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Springer, Dordrecht

    Book  Google Scholar 

  • Smith NJ (1979) Aquatic turtles of Amazonia: an endangered resource. Biol Conserv 16:165–176

    Article  Google Scholar 

  • Sork VL, Waits L (2010) Contributions of landscape genetics—approaches, insights, and future potential. Mol Ecol 19:3489–3495

    Article  PubMed  Google Scholar 

  • Spear SF, Cushman SA, Mcrae BH (2016) Resistance surface modeling in landscape genetics. In: Balkenhol N, Cushman SA, Storfer A et al (eds) Landscape genetics: concepts, methods, applications, vol 1. Wiley, West Sussex, pp 129–148

    Google Scholar 

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. Proc Natl Acad Sci USA 101:15261–15264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Steele C, Baumsteiger J, Storfer A (2009) Influence of life-history variation on the genetic structure of two sympatric salamander taxa. Mol Ecol 18:1629–1639

    Article  CAS  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Spear SF et al (2010) Landscape genetics: Where are we now? Mol Ecol 19:3496–3514

    Article  PubMed  Google Scholar 

  • Thomaz AT, Malabarba LR, Bonatto SL et al (2015) Testing the effect of palaeodrainages versus habitat stability on genetic divergence in riverine systems: study of a Neotropical fish of the Brazilian coastal Atlantic Forest. J Biogeogr 42:2389–2401

    Article  Google Scholar 

  • Turtle Conservation Fund (2002) A global action plan for conservation of tortoises and freshwater turtles: strategy and funding prospectus 2002–2007. Conservation International and Chelonian Research Foundation, Washington

    Google Scholar 

  • Van Etten J (2012) gdistance: Distances and routes on geographical grids. R package version 1.1–4

  • Vargas-Ramírez M, Stuckas H, Castaño-Mora OV et al (2012) Extremely low genetic diversity and weak population differentiation in the endangered Colombian river turtle Podocnemis lewyana (Testudines: Podocnemididae). Conserv Genet 13:65–77

    Article  Google Scholar 

  • Venticinque E, Forsberg B, Barthem R et al (2016) An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon. Earth Syst Sci Data 8:651

    Article  Google Scholar 

  • Viana MNS, Oliveira JA, Agostini MA et al (2017) Population genetic structure of the threatened Amazon River turtle Podocnemis sextuberculata (Testudines, Podocnemididae). Chelonian Conserv Biol 16(2):128–138

    Article  Google Scholar 

  • Vogt RC (2008) Amazon turtles. INPA, Manaus

    Google Scholar 

  • Wagner HH, Fortin M-J (2013) A conceptual framework for the spatial analysis of landscape genetic data. Conserv Genet 14:253–261

    Article  Google Scholar 

  • Wagner HH, Fortin MJ (2016) Basics of spatial data analysis: linking landscape and genetic data for landscape genetic studies. In: Balkenhol N, Cushman SA, Storfer A et al (eds) Landscape genetics: concepts, methods, applications, vol 1. Wiley, West Sussex, pp 77–98

    Google Scholar 

  • Wang IJ (2010) Recognizing the temporal distinctions between landscape genetics and phylogeography. Mol Ecol 19:2605–2608

    Article  PubMed  Google Scholar 

  • Wang IJ, Bradburd GS (2014) Isolation by environment. Mol Ecol 23:5649–5662

    Article  PubMed  Google Scholar 

  • Wang Y-H, Yang K-C, Bridgman CL, Lin L-K (2008) Habitat suitability modelling to correlate gene flow with landscape connectivity. Landsc Ecol 23:989–1000

    Google Scholar 

  • Wang IJ, Savage WK, Bradley Shaffer H (2009) Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Mol Ecol 18:1365–1374

    Article  PubMed  Google Scholar 

  • Wang IJ, Glor RE, Losos JB (2013) Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol Lett 16:175–182

    Article  PubMed  Google Scholar 

  • Wofford JE, Gresswell RE, Banks MA (2005) Influence of barriers to movement on within-watershed genetic variation of coastal cutthroat trout. Ecol Appl 15:628–637

    Article  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos 496–506

  • Zeller KA, Mcgarigal K, Whiteley AR (2012) Estimating landscape resistance to movement: a review. Landsc Ecol 27:777–797

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Master’s fellowship to J.A.O., 475559/2013-4 and 305535/2017-0 to F.P.W., 302297/2015-4 to G.C.C., SISBIOTA 563348/2010-0 to I.P.F.); Fundação de Amparo à Pesquisa do Amazonas-FAPEAM (062.00665/2015 and 062.01110/2017 to F.P.W.); Partnerships for Enhanced Engagement in Research from the U.S. National Academy of Sciences and U.S. Agency of International Development-PEER NAS/USAID (AID-OAA-A-11-00012 to F.P.W.); and by the L’Oréal-UNESCO For Women In Science Program to F.P.W. We thank M. N. S. Viana for contributing with additional biological samples used in this work. We also thank P. C. A. Machado, R. C. Vogt, J. Erickson and F. Fernandes for collecting samples. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica dos Anjos Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8521 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, J.d.A., Farias, I.P., Costa, G.C. et al. Model-based riverscape genetics: disentangling the roles of local and connectivity factors in shaping spatial genetic patterns of two Amazonian turtles with different dispersal abilities. Evol Ecol 33, 273–298 (2019). https://doi.org/10.1007/s10682-019-09973-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-019-09973-4

Keywords

Navigation