Skip to main content
Log in

Local adaptation of tree lizards to canyon dwelling

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

How and under what situations populations adapt to local conditions remains a key question in evolutionary biology. This study tests if the particular morphology of a population of Tree lizards, Urosaurus ornatus, located in a canyon on the margin of the species range represents an adaptation to canyon habitat. Morphology was compared across 40 populations showing that relative hind limb length, tail length, and mass were all outliers for this population. The function of the relatively longer hind limbs, tail, and lower mass was proposed to be for better sprinting ability on the sheer canyon walls that provide the only available habitat structure for this population. Partial least squares regression found significant effects of tail length on top speed on a broad, steep surface. Partial least squares logistic regression identified significant effects of tail length on survival as well in males but not females of this population. Another canyon population of Tree lizards with access to alternative substrates (trees) showed no evidence of selection on the same morphological features. Ancestral state reconstruction using a phylogeny inferred for 21 populations found that the unique morphology of the focal population was evolutionarily derived compared to closely related populations and so likely arose under the present environmental conditions. Population genetic structure also supported the process of adaptive divergence as there was no evidence for migration and/or a recent genetic bottleneck in the focal population. Lizards in this population appear to have responded to selection allowing them to become specialists for running on canyon walls while other canyon populations with access to a greater variety of habitat structure have not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdi H (2010) Partial least squares regression and projection on latent structure regression. Wiley Interdiscip Rev Comput Stat 2:97–106

    Article  Google Scholar 

  • Arnold SJ (1983) Morphology, performance and fitness. Am Zool 23:347–361

    Article  Google Scholar 

  • Bonino M, Azocar D, Tulli M et al (2011) Running in cold weather: morphology, thermal biology, and performance in the southernmost lizard clade in the world (Liolaemus lineomaculatus section: Liolaemini: Iguania). J Exp Zool 315:495–503

    Article  Google Scholar 

  • Brandon R (1991) Adaptation and environment. Princeton University Press, Princeton

    Google Scholar 

  • Brodie ED, Moore AJ, Janzen FJ (1995) Visualizing and quantifying natural selection. Trends Ecol Evol 10:313–318

    Article  PubMed  Google Scholar 

  • Calsbeek R, Irschick DJ (2007) The quick and the dead: correlational selection on morphology, performance, and habitat use in island lizards. Evolution 61:2493–2503

    Article  PubMed  Google Scholar 

  • Camargo A, Sinervo B, Sites JW (2010) Lizards as model organisms for linking phylogeographic and speciation studies. Mol Ecol 19:3250–3270

    Article  PubMed  Google Scholar 

  • Carrascal LM, Galván I, Gordo O (2009) Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118:681–690

    Article  Google Scholar 

  • Chakraborty R, Nei M (1977) Bottleneck effects on average heterozygosity and genetic distance with the stepwise mutation model. Evolution 31:347–356

    Article  PubMed  Google Scholar 

  • Cooper WJ, Wilson D, Smith G (2009) Sex, reproductive status, and cost of tail autotomy via decreased running speed in lizards. Ethology 115:7–13

    Article  Google Scholar 

  • Cornuet J, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  PubMed Central  CAS  Google Scholar 

  • Crisci JL, Dean MD, Ralph P (2016) Adaptation in isolated populations: when does it happen and when can we tell? Mol Ecol 25:3901–3911

    Article  PubMed  Google Scholar 

  • Di Rienzo A, Peterson A, Garza J et al (1994) Mutational processes of simple sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  PubMed  Google Scholar 

  • Dunham AE (1982) Demographic and life-history variation among populations of the iguanid lizard Urosaurus ornatus: implications for the study of life-history phenomena in lizards. Herpetologica 38:208–221

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver 30: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    Article  CAS  Google Scholar 

  • Feldman CR, Flores-Villela O, Papenfuss TJ (2011) Phylogeny, biogeography, and display evolution in the tree and brush lizard genus Urosaurus (Squamata: Phrynosomatidae). Mol Phylogenet Evol 61:714–725

    Article  PubMed  Google Scholar 

  • Foster K, Collins C, Higham T, Garland TJ (2015) Determinants of lizard performance: decision, motivation, ability, and opportunity. In: Cooper WEJ, Blumstein D (eds) Escaping from predators: an integrative view of escape decisions and refuge use. Cambridge University Press, New York, pp 287–321

    Chapter  Google Scholar 

  • Fuller P, Higham T, Clark A (2011) Posture, speed, and habitat structure: three- dimensional hindlimb kinematics of two species of padless geckos. Zoology 114:104–112

    Article  PubMed  Google Scholar 

  • Funk WC, Lovich RE, Hohenlohe PA et al (2016) Adaptive divergence despite strong genetic drift: Genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis). Mol Ecol 25:2176–2194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garland TJ, Losos J (1994) Ecological morphology of locomotor performance in squamate reptiles. In: Wainwright P, Reilly S (eds) Ecological morphology: integrative organismal biology. University of Chicago Press, Chicago, IL, pp 241–302

    Google Scholar 

  • Garland TJ, Bennet AF, Daniels CB (1990) Heritability of locomoter performance and its correlates in a natural population. Experientia 46:530–533

    Article  Google Scholar 

  • Garthwaite PH (1994) An interpretation of partial least squares. J Am Stat Ass 89:122–127

    Article  Google Scholar 

  • Goodman SJ, Tamate H, Wilson R et al (2001) Bottlenecks, drift and differentiation: the population structure and demographic history of sika deer (Cervus nippon) in the Japanese archipelago. Mol Ecol 10:1357–1370

    Article  PubMed  CAS  Google Scholar 

  • Goodman BA, Miles DB, Schwarzkopf L (2008) Life on the rocks: habitat use drives morphological and performance evolution in lizards. Ecology 89:3462–3471

    Article  PubMed  Google Scholar 

  • Goudet J (1995) Fstat version 12: a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Gould SJ, Lewontin R (1979) The spandrels of san marco and the panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond 205:581–598

    Article  PubMed  CAS  Google Scholar 

  • Haenel GJ (2007) Phylogeography of the tree lizard, Urosaurus ornatus: responses of populations to past climate change. Mol Ecol 16:4321–4334

    Article  PubMed  CAS  Google Scholar 

  • Haenel GJ (2009) Isolation and characterization of microsatellite markers in tree lizards (Urosaurus ornatus). Mol Ecol Resour 9:597–599

    Article  PubMed  CAS  Google Scholar 

  • Haenel GJ (2011) Effects of habitat on clutch size of ornate tree lizards, Urosaurus ornatus. West North Am Nat 71:247–256

    Article  Google Scholar 

  • Haenel GJ (2017) Introgression of mtDNA in Urosaurus lizards: historical and ecological processes. Mol Ecol 26:606–623

    Article  PubMed  CAS  Google Scholar 

  • Heber S, Varsani A, Kuhn S et al (2013) The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors. Proc R Soc B Biol Sci 280:2012–2228

    Google Scholar 

  • Hedrick P (1999) Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318

    Article  PubMed  Google Scholar 

  • Hendry AP, Taylor EB (2004) How much of the variation in adaptive divergence can be explained by gene flow: an evaluation using lake-stream stickleback pairs. Evolution (N Y) 58:2319–2331

    Google Scholar 

  • Hereford J (2009) A quantitative survey of local adaptation and fitness trade-offs. Am Nat 173:579–588

    Article  PubMed  Google Scholar 

  • Herrel A, Meyers JJ, Vanhooydonck B (2001) Correlations between habitat use and body shape in a phrynosomatid lizard (Urosaurus ornatus): a population-level analysis. Biol J Linn Soc 74:305–314

    Article  Google Scholar 

  • Hoekstra HE, Drumm KE, Nachman MW (2004) Ecological genetics of adaptive color polymorphism in pocket mice: geographic variation in selected and neutral genes. Evolution 58:1329–1341

    Article  PubMed  CAS  Google Scholar 

  • Hoffsten P (2004) Site-occupancy in relation to flight-morphology in caddisflies. Freshw Biol 49:810–817

    Article  Google Scholar 

  • House PK, Pearthree PA, Howard KA, Bell JW, Perkins ME, Faulds JE, Brock AL (2005) Birth of the lower Colorado River—stratigraphic and geomorphic evidence for its inception near the conjunction of Nevada, Arizona, and California. In: Pederson J, Dehler CM (eds) Interior Western United States: geological society of America Field Guide 6. pp 357–387. https://doi.org/10.1130/2005.fld006(17)

  • Howard K, Hailey A (1999) Microhabitat separation among diurnal saxicolous lizards in Zimbabwe. J Trop Ecol 15:367–378

    Article  Google Scholar 

  • Huelsenbeck J, Ronquist F (2001) MrBayes: bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Husak JF (2006) Does survival depend on how fast you can run or how fast you do run? Funct Ecol 20:1080–1086

    Article  Google Scholar 

  • Husak JF, Fox SF (2006) Field use of maximal sprint speed by collared lizards (Crotaphytus collaris): compensation and sexual selection. Evolution 60:1888–1895

    Article  PubMed  Google Scholar 

  • Husak JF, Fox SF, Lovern MB, Van Den Bussche RA (2006) Faster lizards sire more offspring: sexual selection on whole-animal performance. Evolution 60:2122–2130

    Article  PubMed  CAS  Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  PubMed  Google Scholar 

  • Imdadullah M, Aslam M, Altaf S (2016) mctest: an R package for detection of collinearity among regressors. R J 8:495–505

    Google Scholar 

  • Irschick DJ, Meyers JJ (2007) An analysis of the relative roles of plasticity and natural selection in the morphology and performance of a lizard (Urosaurus ornatus). Oecologia 153:489–499

    Article  PubMed  Google Scholar 

  • Irschick DJ, Meyers JJ, Husak JF, Le Galliard JF (2008) How does selection operate on whole-organism functional performance capacities? A review and synthesis. Evol Ecol Res 10:177–196

    Google Scholar 

  • Janzen F, Stern H (1998) Logistic regression for empirical studies of multivariate selection. Evolution 52:1564–1571

    Article  PubMed  Google Scholar 

  • Johnson M, Revell L, Losos J (2010) Behavioral convergence and adaptive radiation: effects of habitat use on territorial behavior in Anolis lizards. Evolution 64:1151–1159

    Article  PubMed  Google Scholar 

  • Jordan MA, Snell HL (2008) Historical fragmentation of islands and genetic drift in populations of Galápagos lava lizards (Microlophus albemarlensis complex). Mol Ecol 17:1224–1237

    Article  PubMed  CAS  Google Scholar 

  • Jordan MA, Snell HL, Snell HM, Jordan WC (2005) Phenotypic divergence despite high levels of gene flow in Galapagos lava lizards (Microlophus albemarlensis). Mol Ecol 14:859–867

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Klingenberg CP (2010) Evolution and development of shape: integrating quantitative approaches. Nat Rev Genet 11:623–635

    Article  PubMed  CAS  Google Scholar 

  • Kolbe JJ, Leal M, Schoener TW et al (2012) Founder effects persist despite adaptive differentiation: a field experiment with lizards. Science 335:1086–1089

    Article  PubMed  CAS  Google Scholar 

  • Kolbe JJ, Battles AC, Aviles-Rodriguez KJ, Van Damme R (2016) City slickers: poor performance does not deter Anolis lizards from using artificial substrates in human-modified habitats. Funct Ecol 30:1418–1429

    Article  Google Scholar 

  • Koumoundouros T, Sumner J, Clemann N, Stuart-Fox D (2009) Current genetic isolation and fragmentation contrasts with historical connectivity in an alpine lizard (Cyclodomorphus praealtus) threatened by climate change. Biol Conserv 142:992–1002

    Article  Google Scholar 

  • Lack D (1947) Darwin’s finches. Cambridge University Press, Cambridge

    Google Scholar 

  • Lailvaux SP, Husak JF (2014) The life history of whole-organism performance. Q Rev Biol 89:285–318

    Article  PubMed  Google Scholar 

  • Lande R (1994) Risk of population extinction from fixation of new deleterious mutations. Evolution 48:1460–1469

    Article  PubMed  Google Scholar 

  • Le Galliard J-F, Clobert J, Ferriere R (2004) Physical performance and Darwinian fitness in lizards. Nature 432:502–505

    Article  PubMed  CAS  Google Scholar 

  • Losos JB (1990) Ecomorphology, performance capability, and scaling of West Indian anolis lizards: an evolutionary analysis. Ecol Monogr 60:369–388

    Article  Google Scholar 

  • Lynch M, Gabriel W (1987) Environmental tolerance. Am Nat 129:283–303

    Article  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard Univ Press, Cambridge

    Book  Google Scholar 

  • Mevik B-H, Wehrens R (2006) The pls package: principal component and partial least squares regression in R. J Stat Softw 18:1–23

    Google Scholar 

  • Miles D (1994) Covariation between morphology and locomotor performance in sceloporine lizards. In: Vitt L, Pianka E (eds) Lizard ecology: historical and experimental perspectives. Princeton University Press, Princeton, pp 207–235

    Google Scholar 

  • Miles D (2004) The race goes to the swift: fitness consequences of variation in sprint performance in juvenile lizards. Evol Ecol Res 6:63–75

    Google Scholar 

  • Miller MP, Haig SM, Mullins TD et al (2012) Evidence for population bottlenecks and subtle genetic structure in the yellow rail. Condor 114:100–112

    Article  Google Scholar 

  • Mittleman MB (1942) A summary of the iguanid genus Urosaurus. Bull Mus Comp Zool 91:106–176

    Google Scholar 

  • Mousseau T, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity (Edinb) 59:181–197

    Article  Google Scholar 

  • Olberding JP, Herrel A, Higham TE, Garland T (2016) Limb segment contributions to the evolution of hind limb length in phrynosomatid lizards. Biol J Linn Soc 117:775–795

    Article  Google Scholar 

  • Olson ME, Arroyo-Santos A (2015) How to study adaptation (and why to do it that way). Q Rev Biol 90:167–191

    Article  PubMed  Google Scholar 

  • Olsson M, Shine R, Bak-Olsson E (2000) Locomotor impairment of gravid lizards: is the burden physical or physiological? J Evol Biol 13:263–268

    Article  Google Scholar 

  • Orzack S, Sober E (1994) Optimality models and the test of adaptationism. Am Nat 143:361–380

    Article  Google Scholar 

  • Pagel M (1999) The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst Biol 48:612–622

    Article  Google Scholar 

  • Pennell MW, Harmon LJ, Uyeda JC (2014) Is there room for punctuated equilibrium in macroevolution? Trends Ecol Evol 29:23–32

    Article  PubMed  Google Scholar 

  • Perry G, Wallace MC, Perry D et al (2011) Toe clipping of amphibians and reptiles: science, ethics, and the law. J Herpetol 45:547–555

    Article  Google Scholar 

  • Petren K, Grant PR, Grant BR, Keller LF (2005) Comparative landscape genetics and the adaptive radiation of Darwin’s finches: the role of peripheral isolation. Mol Ecol 14:2943–2957

    Article  PubMed  CAS  Google Scholar 

  • Piry S, Luikart G, Cornuet J (1999) Bottleneck, a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • R Core Development Team (2016) R: a language and environment for statistical computing. R a Lang. Environ. Stat. Comput

  • Robson MA, Miles DB (2000) Locomotor performance and dominance in male Tree Lizards, Urosaurus ornatus. Funct Ecol 14:338–344

    Article  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P (2012) MrBayes 32: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenblum EB, Römpler H, Schöneberg T, Hoekstra HE (2010) Molecular and functional basis of phenotypic convergence in white lizards at White Sands. Proc Natl Acad Sci U S A 107:2113–2117

    Article  PubMed  Google Scholar 

  • Schluter D, Price T, Mooers A, Ludwig D (1997) Likelihood of ancestral states in adaptive radiation. Evolution 51:1699–1711

    Article  PubMed  Google Scholar 

  • Shi ZH, Ai L, Li X et al (2013) Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds. J Hydrol 498:165–176

    Article  Google Scholar 

  • Smith D (1977) Interspecific competition and the demography of tree lizards. The University of Mich, Ann Arbor

    Google Scholar 

  • Sorci G, Swallow JG, Garland JT, Clobert J (1995) Quantitative genetics of locomotor speed and endurance in the lizard Lacerta vivipara. Physiol Zool 68:698–720

    Article  Google Scholar 

  • Spurgin LG, Illera JC, Jorgensen TH et al (2014) Genetic and phenotypic divergence in an island bird: isolation by distance, by colonization or by adaptation? Mol Ecol 23:1028–1039

    Article  PubMed  Google Scholar 

  • Stanton ML, Galen C (1997) Life on the edge: adaptation versus environmentally mediated gene flow in the snow buttercup, Ranunculus adoneus. Am Nat 150:143–178

    Article  Google Scholar 

  • Stebbins R (2003) Western reptiles and amphibians. Houghton Mifflin Co, Boston

    Google Scholar 

  • Swingland I, Greenwood P (1983) The ecology of animal movement. Clarendon Press, Oxford

    Google Scholar 

  • Tinkle DW, Dunham AE (1983) Demography of the tree lizard, Urosaurus ornatus, in Central Arizona. Copeia 1983:585–598

    Article  Google Scholar 

  • Tsuji JS, Huey RB, van Berkum FH et al (1989) Locomotor performance of hatchling fence lizards (Sceloporus occidentalis) quantitative genetics and morphometric correlates. Evol Ecol 3:240–252

    Article  Google Scholar 

  • Tulli MJ, Abdala V, Cruz FB (2012) Effects of different substrates on the sprint performance of lizards. J Exp Biol 215:774–784

    Article  PubMed  Google Scholar 

  • Van Berkum F, Tsuji J (1987) Inter-familial differences in sprint speed of hatchling Sceloporus occidentalis. J Zool 212:511–519

    Article  Google Scholar 

  • Van Damme R, Entin P, Vanhooydonck B, Herrel A (2008) Causes of sexual dimorphism in performance traits: a comparative approach. Evol Ecol Res 10:229–250

    Google Scholar 

  • Vanhooydonck B, Van Damme R (2001) Evolutionary trade-offs in locomotor capacities in lacertid lizards: are splendid sprinters clumsy climbers? J Evol Biol 14:46–54

    Article  PubMed  CAS  Google Scholar 

  • Wells BK, Grimes CB, Sneva JG et al (2008) Relationships between oceanic conditions and growth of Chinook salmon (Oncorhynchus tshawytscha) from California, Washington, and Alaska, USA. Fish Oceanogr 17:101–125

    Article  Google Scholar 

  • Whitlock MC (2003) Fixation probability and time in subdivided populations. Genetics 164:767–779

    PubMed  PubMed Central  Google Scholar 

  • Whitlock MC, Ingvarsson PK, Hatfield T (2000) Local drift load and the heterosis of interconnected populations. Heredity (Edinb) 84:452–457

    Article  Google Scholar 

  • Wilson G, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support for this research came from the Elon University Faculty Research and Development Committee. A. Simkin provided useful feedback on this manuscript and R. Kirk helped in developing Fig. 1. The author declares no conflicts of interest. Research was carried out under Lake Mead National Recreation Area Scientific Research Permit #LAME-2006-SCI-0004 and Utah State Scientific Permit #1COLL6968. All use of animals was carried out following the Guidelines for Use of Live Amphibians and Reptiles in Field and Laboratory Research. 2nd Edition, Revised by the Herpetological Animal Care and Use Committee (HACC) of the American Society of Ichthyologists and Herpetologists, 2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Haenel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10682_2018_9943_MOESM1_ESM.xlsx

S1_SVL_HL_MASS: Population mean SVL, HL, MASS, and Tail used for regression analyses of relative hind limb mass and tails across populations in Figure 2 (excel) (XLSX 10 kb)

S2_peakspeed_morph: Data for morphology and speed for GS and MUL (excel) (XLSX 19 kb)

S3_Survival: Survival data 1=present in second census (excel) (XLSX 27 kb)

S4_Table S2: Descriptions of scale morphology traits used in phylogenetic analyses (doc) (DOCX 13 kb)

S5_data_Scaledata: Scale morphology used for phylogenetic characters (excel) (XLSX 66 kb)

S6_Uro_DNA_morph_170401.nex: input file for phylogenetic analyses (nex) (NEX 17 kb)

S7_Uro_DNA_morph_170401.nex.run1: Output from Bayesian phylogenetic analysis, run 1 (txt) (P 2,654 kb)

S8_Uro_DNA_morph_170401.nex.run2: Output from Bayesian phylogenetic analysis, run 2 (txt) (P 2,654 kb)

S9_Uo_morph_pop_tail: morphology for 21 populations used in ancestral reconstruction (excel) (XLSX 25 kb)

Table_S1: Population location and sample size data (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haenel, G.J. Local adaptation of tree lizards to canyon dwelling. Evol Ecol 32, 315–334 (2018). https://doi.org/10.1007/s10682-018-9943-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-018-9943-6

Keywords

Navigation