Advertisement

Evolutionary Ecology

, Volume 32, Issue 2–3, pp 287–314 | Cite as

Echoes of the whispering land: interacting roles of vicariance and selection in shaping the evolutionary divergence of two Calceolaria (Calceolariaceae) species from Patagonia and Malvinas/Falkland Islands

  • Matías Cristian Baranzelli
  • Andrea Cosacov
  • Anahí Espíndola
  • Maria del Rosario Iglesias
  • Lauren M. Chan
  • Leigh A. Johnson
  • Alicia Noemí Sérsic
Original Paper

Abstract

A key to understanding the origin and identity of young species lays on the knowledge of the Quaternary climatic oscillations’ effect on gene flow and vicariance. Even though the effect of climatic fluctuations is relatively well understood for southern hemisphere plant species, little is known about their effect on the evolutionary histories of species from mainland and islands. Thus, we investigated whether Quaternary climate-driven fluctuations translated into lineage divergence and speciation, followed or not by climatic niche differentiation, in two allopatric plant species, Calceolaria uniflora and C. fothergillii from Patagonia and Malvinas/Falkland islands, respectively. We sampled the range of both species, and sequenced two chloroplastic (cpDNA; trnS–trnG and trnH–psbA), and one single copy “anonymous” non-coding nuclear region (nDNA). We performed phylogeographic and dating analyses, and adjusted spatio-temporal diffusion models. We complemented molecular evidence with climatic niche differentiation analyses and species paleo-distribution projections. A species coalescent reconstruction based on multi-locus data retrieved both species as monophyletic. Estimates from cpDNA indicated the species diverged during the Great Patagonian Glaciation. Chloroplast and nuclear DNA showed east–west distribution of the main genetic groups but with contrasting spatial genetic diversity. The spatio-temporal diffusion analyses showed that between 1–0.8 Mya and 570 Kya the lineage leading to C. fothergillii diverged from C. uniflora and arrived to the islands. Climatic niche projections hindcasted range expansions during glaciations, and contractions during the interglacial periods. Comparisons of climatic niches between the two study species indicated that temperature variables show evidence of niche conservatism while precipitation regimes supported niche divergence, even when considering the background environmental divergence. Our study indicates that glacial fluctuations affected the mainland/islands connections favouring speciation mediated not only by isolation, but also by climatic niche differentiation.

Keywords

Climatic niche differentiation Gene flow Paleo distribution models Plant phylogeography Pleistocene glaciations Speciation 

Notes

Acknowledgements

A. C. and A. N. S. acknowledge the National Research Council of Argentina (CONICET) and the Universidad Nacional de Córdoba (UNC) as researchers, and M. C. B. as postdoctoral fellowship holder. We thank APN Argentina for permits to work within parks and reserves. The authors thank P. R. Riquez for allowing sampling in Ea. Verdadera Argentina, R. Upson, and the Falkland Conservation for providing samples and information on C. fothergillii, E. Dominguez for providing georeferences in Chile, A.A. Cocucci, S. Benitez Vieyra D. Carmona for field assistance, and M. C. Acosta for analytical support. Funding: National Research Council of Argentina [PIP 201101-00245, PIP 11220150100690CO] to A.N.S., the National Ministry of Science and Technology [FONCYT-PICT-2011-0837, PICT 2015-3089] to A.N.S., and A.E. was supported by the Swiss National Science Foundation [Grants P300P3 151141 and PBNEP3 140192]

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

10682_2018_9938_MOESM1_ESM.rtf (2.5 mb)
Supplementary material 1 (RTF 2529 kb)
10682_2018_9938_MOESM2_ESM.rtf (3.1 mb)
Supplementary material 2 (RTF 3210 kb)
10682_2018_9938_MOESM3_ESM.rtf (1.5 mb)
Supplementary material 3 (RTF 1486 kb)
10682_2018_9938_MOESM4_ESM.rtf (130 kb)
Supplementary material 4 (RTF 129 kb)
10682_2018_9938_MOESM5_ESM.rtf (72 kb)
Supplementary material 5 (RTF 72 kb)
10682_2018_9938_MOESM6_ESM.rtf (49 kb)
Supplementary material 6 (RTF 48 kb)
10682_2018_9938_MOESM7_ESM.rtf (218 kb)
Supplementary material 7 (RTF 217 kb)
10682_2018_9938_MOESM8_ESM.rtf (47 kb)
Supplementary material 8 (RTF 46 kb)
10682_2018_9938_MOESM9_ESM.rtf (59 kb)
Supplementary material 9 (RTF 59 kb)
10682_2018_9938_MOESM10_ESM.avi (1.1 mb)
Supplementary material 10 (AVI 1169 kb)
10682_2018_9938_MOESM11_ESM.avi (1.6 mb)
Supplementary material 11 (AVI 1616 kb)

References

  1. Alsos IG, Engelskjøn T, Gielly L, Taberlet P, Brochmann C (2005) Impact of ice ages on circumpolar molecular diversity: insights from an ecological key species. Mol Ecol 14:2739–2753CrossRefPubMedGoogle Scholar
  2. Anderson RP, Gonzales I Jr (2011) Species–specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol Model 222:2796–2811CrossRefGoogle Scholar
  3. Arroyo MTK, Squeo F (1990) Relationship between plant breeding systems and pollination. In: Kawano S (ed) Biological approaches and evolutionary trends in plants. Academic Press, London, pp 205–227CrossRefGoogle Scholar
  4. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  5. Baranzelli MC, Cosacov A, Ferreiro G, Johnson L, Sérsic AN (2017) Travelling to the south: Phylogeographic spatial diffusion model in Monttea aphylla (Plantaginaceae), an endemic plant of the Monte Desert. PLoS ONE 12:0178827CrossRefGoogle Scholar
  6. Barve N (2008) Tool for partial ROC. Biodiversity Institute, Lawrence, KSGoogle Scholar
  7. Bielejec F, Rambaut A, Suchard MA, Lemey P (2011) SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics 27:2910–2912CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bielejec F, Baele G, Vrancken B et al (2016) Spread3: interactive visualization of spatiotemporal history and trait evolutionary processes. Mol Biol Evol 33:2167–2169CrossRefPubMedGoogle Scholar
  9. Bouckaert RR (2010) DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 15:1372–1373CrossRefGoogle Scholar
  10. Braunisch V, Coppes J, Arlettaz R et al (2013) Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography 36:971–983CrossRefGoogle Scholar
  11. Bulgarella M, Kopuchian C, Di Giacom AS et al (2013) Molecular phylogeny of the South American sheld geese with implications for conservation of Falkland islands (Malvinas) and continental populations of the Ruddy-headed Goose Chloephaga rubidiceps and Upland Goose C. picta. Bird Conserv Int 24:59–71CrossRefGoogle Scholar
  12. Camargo A, Sinervo B, Sites JW Jr (2010) Lizards as model organisms for linking phylogeographic and speciation studies. Mol Ecol 19:3250–3270CrossRefPubMedGoogle Scholar
  13. Camargo A, Werneck F, Morando M, Sites JW Jr, Avila L (2013) Quaternary range and demographic expansion of Liolaemus darwinii (Squamata: Liolaemidae) in the Monte Desert of Central Argentina using Bayesian phylogeography and ecological niche modelling. Mol Ecol 22:4038–4054CrossRefPubMedGoogle Scholar
  14. Campagna L, St Clair JJH, Lougheed SC et al (2012) Divergence between passerine populations from the Malvinas—Falkland islands and their continental counterparts: a comparative phylogeographical study. Biol J Linn Soc 106:865–879CrossRefGoogle Scholar
  15. Comes HP, Kadereit JW (1998) The effect of Quaternary climatic changes on plant distribution and evolution. Trends Plant Sci 3:432–438CrossRefGoogle Scholar
  16. Cosacov A, Sérsic AN, Sosa V et al (2009) New insights into the phylogenetic relationships, character evolution, and phytogeographic patterns of Calceolaria (Calceolariaceae). Am J Bot 96:2240–2255CrossRefPubMedGoogle Scholar
  17. Cosacov A, Sérsic AN, Sosa V et al (2010) Multiple periglacial refugia in the Patagonian steppe and post-glacial colonization of the Andes: the phylogeography of Calceolaria polyrhiza. J Biogeogr 37:1463–1477Google Scholar
  18. Cosacov A, Johnson L, Paiaro V, Cocucci A, Córdoba FE, Sérsic AN (2013) Precipitation rather than temperature influenced the phylogeography of the endemic shrub Anarthrophyllum desideratum in the Patagonian steppe. J Biogeogr 40:168–182CrossRefGoogle Scholar
  19. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19:11–15Google Scholar
  20. Drummond AJ, Suchard MA, Xie D et al (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581CrossRefPubMedGoogle Scholar
  22. Ehrhart C (2000) Die Gattung Calceolaria (Scrophulariaceae) in Chile. Biblioth Bot 153:1–283Google Scholar
  23. Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13:853–864CrossRefPubMedGoogle Scholar
  24. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50CrossRefGoogle Scholar
  25. Fernández RJ, Golluscio RA, Bisigato AJ et al (2002) Gap colonization in the Patagonian semidesert: seed bank and diaspore morphology. Ecography 25:336–344CrossRefGoogle Scholar
  26. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  27. Gaston KJ (2009) Geographic range limits: achieving synthesis. Proc R Soc B 276:1395–1406CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  29. Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 8:521–523PubMedGoogle Scholar
  30. Heled J, Drummond AJ (2008) Bayesian inference of population size history from multiple loci. BMC Evolut Biol 8:289CrossRefGoogle Scholar
  31. Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580CrossRefPubMedGoogle Scholar
  32. Hewitt GM (2004) Genetic consequences of climatic oscillations in the quaternary. Philos Trans Ser B 359:183–195CrossRefGoogle Scholar
  33. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  34. Hua X, Wiens JJ (2013) How does climate influence speciation? Am Nat 182:1–12CrossRefPubMedGoogle Scholar
  35. Karl SA, Avise JC (1993) PCR-based assays of Mendelian polymorphisms from anonymous single-copy nuclear DNA: techniques and applications for population genetics. Mol Biol Evol 10:342–361PubMedGoogle Scholar
  36. Kébé K, Alvarez N, Tuda M et al (2017) Global phylogeography of the insect pest Callosobruchus maculatus (Coleoptera: Bruchinae) relates to the history of its main host, Vigna unguiculata. J Biogeogr 44:2515–2526CrossRefGoogle Scholar
  37. Lemey P, Rambaut A, Welch JJ et al (2010) Phylogeography takes a relaxed random walk in continuous space and time. Mol Biol Evol 27:1877–1885CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lessa EP, D’Elía G, Pardiñas UFJ (2010) Genetic footprints of late quaternary climate change in the diversity of Patagonian-Fueguian rodents. Mol Ecol 19:3031–3037CrossRefPubMedGoogle Scholar
  39. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  40. Lima-Ribeiro MS, Varela S, González-Hernández J et al (2015) Ecoclimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodivers Inform 10:1–21CrossRefGoogle Scholar
  41. Lopez A, Bonasora MG (2017) Phylogeography, genetic diversity and population structure in a Patagonian endemic plant. Ann Botany 9:plx017Google Scholar
  42. Losos JB, Ricklefs RE (2009) Adaptation and diversification on islands. Nature 457:830–836CrossRefPubMedGoogle Scholar
  43. Mascó M, Noy-Meir I, Sérsic AN (2004) Geographic variation in flower color patterns within Calceolaria uniflora Lam. in Southern Patagonia. Plant Syst Evol 244:77–91CrossRefGoogle Scholar
  44. McCormack JE, Zellmer AJ, Knowles LL (2009) Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation?: insights from tests with niche models. Evolution 64:1231–1244PubMedGoogle Scholar
  45. McDowall RM (2005) Falkland Islands biogeography: converging trajectories in the South Atlantic Ocean. J Biogeogr 32:49–62CrossRefGoogle Scholar
  46. Molau U (1988) Scrophulariaceae—Part I. Calceolarieae. Flora Neotropica 47:1–326Google Scholar
  47. Morrone JJ, Posada P (2005) Falklands: facts and fiction. J Biogeogr 32:2183–2187CrossRefGoogle Scholar
  48. Nascimento FF, Lazar A, Menezes AN et al (2013) The role of historical barriers in the diversification processes in open vegetation formations during the Miocene/Pliocene using an ancient rodent lineage as a model. PLoS ONE 8:e61924CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nei M (1987) Molecular evolutionary genetics. Columbia Univ. Press, New YorkGoogle Scholar
  50. Nicola MV, Sede SM, Pozner R et al (2014) Phylogeography and palaeodistribution modelling of Nassauvia subgenus Strongyloma (Asteraceae): exploring phylogeographical scenarios in the Patagonian steppe. Ecol Evol 4:4270–4286PubMedPubMedCentralGoogle Scholar
  51. Noguerales V, Cordero PJ, Ortego J (2017) Testing the role of ancient and contemporary landscapes on structuring genetic variation in a specialist grasshopper. Ecol Evol 7:3110–3122CrossRefPubMedPubMedCentralGoogle Scholar
  52. Nylinder S, Swnson U, Persson C et al (2012) A dated species-tree approach to the trans-Pacific disjunction of the genus Jovellana (Calceolariaceae, Lamiales). Taxon 61:381–391Google Scholar
  53. Otto-Bliesner BL, Marshall SJ, Overpeck JT et al (2006) Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311:1751–1753CrossRefPubMedGoogle Scholar
  54. Papadopoulou A, Jones AG, Hammond PM et al (2009) DNA taxonomy and phylogeography of beetles of the Falkland Islands (Islas Malvinas). Mol Phylogenet Evol 53:935–947CrossRefPubMedGoogle Scholar
  55. Peterson AT, Papes M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72CrossRefGoogle Scholar
  56. Pfanzelt S, Albach DC, von Hagen KB (2017) Tabula rasa in the patagonian channels? The phylogeography of Oreobolus obtusangulus (Cyperaceae). Mol Ecol 26:4027–4044CrossRefPubMedGoogle Scholar
  57. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  58. Ponce JF, Rabassa J, Coronato A, Borromei AM (2011) Palaeogeographical evolution of the atlantic coast of pampa and patagonia from the last glacial maximum to the Middle Holocene. Biol J Linn Soc 103:363–379CrossRefGoogle Scholar
  59. QGIS Development Team (2016) QGIS geographic information system. Open source geospatial foundation project. Available from http://www.qgis.org/. Accessed Dec 2016
  60. Rabassa J (2008) Late Cenozoic glaciations in Patagonia and Tierra del Fuego. In: Rabassa J (ed) The late Cenozoic of Patagonia and Tierra del Fuego. Elsevier, Oxford, pp 151–204CrossRefGoogle Scholar
  61. Rabassa J, Coronato A, Martınez O (2011) Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review. Biol J Linn Soc 103:316–335CrossRefGoogle Scholar
  62. Rambaut A, Drummond AJ (2008) FigTree: tree figure drawing tool, v1.2.2. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree
  63. Rambaut A, Drummond AJ (2009) Trac, hfer v1.5.0. MCMC trace analysis tool. http://beast.bio.ed.ac.uk/Tracer. Accessed Dec 2016
  64. Ramos VA, Ghiglione J (2008) Tectonic evolution of the Patagonian Andes. In: Rabassa J (ed) The late Cenozoic of Patagonia and Tierra del Fuego. Elsevier, Oxford, pp 57–71CrossRefGoogle Scholar
  65. Rull V (2006) Quaternary speciation in the neotropics. Mol Ecol 15:4257–4259CrossRefPubMedGoogle Scholar
  66. Ruzzante DE, Walde SJ, Gosse JC et al (2008) Climate control on ancestral population dynamics: insight from patagonian fish phylogeography. Mol Ecol 17:2234–2244CrossRefPubMedGoogle Scholar
  67. Sérsic AN (2004) Pollination biology in the genus Calceolaria L. (Calceolariaceae). Stapfia 82:1–125Google Scholar
  68. Sérsic AN, Cocucci AA (1996) A remarkable case of ornithophily in Calceolaria: food bodies as rewards for a non-nectarivorous bird. Bot Acta 109:172–176CrossRefGoogle Scholar
  69. Sérsic AN, Cosacov A, Cocucci AA et al (2011) Emerging phylogeographical patterns of plants and terrestrial vertebrates from Patagonia. Biol J Linn Soc 103:475–494CrossRefGoogle Scholar
  70. Shaw J, Lickey EB, Beck JT et al (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166CrossRefPubMedGoogle Scholar
  71. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381CrossRefPubMedGoogle Scholar
  72. Singer B, Ackert R, Guillou H (2004) 40Ar/39Ar and K-Ar chronology of pleistocene glaciations in Patagonia. GSA Bull 116:434–450CrossRefGoogle Scholar
  73. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989CrossRefPubMedPubMedCentralGoogle Scholar
  74. Stewart JR, Lister AM, Barnes I (2010) Refugia revisited: individualistic responses of species in space and time. Proc R Soc Lond B 277:661–671CrossRefGoogle Scholar
  75. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460PubMedPubMedCentralGoogle Scholar
  76. Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123:598–601Google Scholar
  77. Thompson JD, Gibson TJ, Plewniak F et al (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882CrossRefGoogle Scholar
  78. Upson R, McAdam JH, Broughton DA et al (2012) Calceolaria fothergillii. The IUCN Red List of Threatened Species 2012: e.T15245657A15245660Google Scholar
  79. Vuilleumier F (1991) A quantitative survey of speciation phenomena in Patagonian birds. Ornitol Neotr 2:5–28Google Scholar
  80. Watson DF (1992) Contouring: a guide to the analysis and display of spatial data. Pergamon Press, New YorkGoogle Scholar
  81. Werneck FP, Leite RN, Geurgas SR (2015) Biogeographic history and cryptic diversity of saxicolous Tropiduridae lizards endemic to the semiarid Caatinga. BMC Evolution Biol 15:94CrossRefGoogle Scholar
  82. Wiens JJ (2011) The niche, biogeography and species interactions. Philos Trans R Soc London B 366:2336–2350CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratorio de Ecología Evolutiva - Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV)CONICET-Universidad Nacional de CórdobaCórdobaArgentina
  2. 2.Department of Biological SciencesUniversity of IdahoMoscowUSA
  3. 3.Department of BiologyPacific UniversityForest GroveUSA
  4. 4.Department of Biology and M. L. Bean Life Science MuseumBrigham Young UniversityProvoUSA
  5. 5.Instituto Multidisciplinario de Biología Vegetal (IMBIV)Ciudad UniversitariaCórdobaArgentina

Personalised recommendations