Skip to main content
Log in

Echoes of the whispering land: interacting roles of vicariance and selection in shaping the evolutionary divergence of two Calceolaria (Calceolariaceae) species from Patagonia and Malvinas/Falkland Islands

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

A key to understanding the origin and identity of young species lays on the knowledge of the Quaternary climatic oscillations’ effect on gene flow and vicariance. Even though the effect of climatic fluctuations is relatively well understood for southern hemisphere plant species, little is known about their effect on the evolutionary histories of species from mainland and islands. Thus, we investigated whether Quaternary climate-driven fluctuations translated into lineage divergence and speciation, followed or not by climatic niche differentiation, in two allopatric plant species, Calceolaria uniflora and C. fothergillii from Patagonia and Malvinas/Falkland islands, respectively. We sampled the range of both species, and sequenced two chloroplastic (cpDNA; trnS–trnG and trnH–psbA), and one single copy “anonymous” non-coding nuclear region (nDNA). We performed phylogeographic and dating analyses, and adjusted spatio-temporal diffusion models. We complemented molecular evidence with climatic niche differentiation analyses and species paleo-distribution projections. A species coalescent reconstruction based on multi-locus data retrieved both species as monophyletic. Estimates from cpDNA indicated the species diverged during the Great Patagonian Glaciation. Chloroplast and nuclear DNA showed east–west distribution of the main genetic groups but with contrasting spatial genetic diversity. The spatio-temporal diffusion analyses showed that between 1–0.8 Mya and 570 Kya the lineage leading to C. fothergillii diverged from C. uniflora and arrived to the islands. Climatic niche projections hindcasted range expansions during glaciations, and contractions during the interglacial periods. Comparisons of climatic niches between the two study species indicated that temperature variables show evidence of niche conservatism while precipitation regimes supported niche divergence, even when considering the background environmental divergence. Our study indicates that glacial fluctuations affected the mainland/islands connections favouring speciation mediated not only by isolation, but also by climatic niche differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alsos IG, Engelskjøn T, Gielly L, Taberlet P, Brochmann C (2005) Impact of ice ages on circumpolar molecular diversity: insights from an ecological key species. Mol Ecol 14:2739–2753

    Article  PubMed  CAS  Google Scholar 

  • Anderson RP, Gonzales I Jr (2011) Species–specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol Model 222:2796–2811

    Article  Google Scholar 

  • Arroyo MTK, Squeo F (1990) Relationship between plant breeding systems and pollination. In: Kawano S (ed) Biological approaches and evolutionary trends in plants. Academic Press, London, pp 205–227

    Chapter  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  PubMed  CAS  Google Scholar 

  • Baranzelli MC, Cosacov A, Ferreiro G, Johnson L, Sérsic AN (2017) Travelling to the south: Phylogeographic spatial diffusion model in Monttea aphylla (Plantaginaceae), an endemic plant of the Monte Desert. PLoS ONE 12:0178827

    Article  CAS  Google Scholar 

  • Barve N (2008) Tool for partial ROC. Biodiversity Institute, Lawrence, KS

    Google Scholar 

  • Bielejec F, Rambaut A, Suchard MA, Lemey P (2011) SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics 27:2910–2912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bielejec F, Baele G, Vrancken B et al (2016) Spread3: interactive visualization of spatiotemporal history and trait evolutionary processes. Mol Biol Evol 33:2167–2169

    Article  PubMed  CAS  Google Scholar 

  • Bouckaert RR (2010) DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 15:1372–1373

    Article  CAS  Google Scholar 

  • Braunisch V, Coppes J, Arlettaz R et al (2013) Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography 36:971–983

    Article  Google Scholar 

  • Bulgarella M, Kopuchian C, Di Giacom AS et al (2013) Molecular phylogeny of the South American sheld geese with implications for conservation of Falkland islands (Malvinas) and continental populations of the Ruddy-headed Goose Chloephaga rubidiceps and Upland Goose C. picta. Bird Conserv Int 24:59–71

    Article  Google Scholar 

  • Camargo A, Sinervo B, Sites JW Jr (2010) Lizards as model organisms for linking phylogeographic and speciation studies. Mol Ecol 19:3250–3270

    Article  PubMed  Google Scholar 

  • Camargo A, Werneck F, Morando M, Sites JW Jr, Avila L (2013) Quaternary range and demographic expansion of Liolaemus darwinii (Squamata: Liolaemidae) in the Monte Desert of Central Argentina using Bayesian phylogeography and ecological niche modelling. Mol Ecol 22:4038–4054

    Article  PubMed  CAS  Google Scholar 

  • Campagna L, St Clair JJH, Lougheed SC et al (2012) Divergence between passerine populations from the Malvinas—Falkland islands and their continental counterparts: a comparative phylogeographical study. Biol J Linn Soc 106:865–879

    Article  Google Scholar 

  • Comes HP, Kadereit JW (1998) The effect of Quaternary climatic changes on plant distribution and evolution. Trends Plant Sci 3:432–438

    Article  Google Scholar 

  • Cosacov A, Sérsic AN, Sosa V et al (2009) New insights into the phylogenetic relationships, character evolution, and phytogeographic patterns of Calceolaria (Calceolariaceae). Am J Bot 96:2240–2255

    Article  PubMed  Google Scholar 

  • Cosacov A, Sérsic AN, Sosa V et al (2010) Multiple periglacial refugia in the Patagonian steppe and post-glacial colonization of the Andes: the phylogeography of Calceolaria polyrhiza. J Biogeogr 37:1463–1477

    Google Scholar 

  • Cosacov A, Johnson L, Paiaro V, Cocucci A, Córdoba FE, Sérsic AN (2013) Precipitation rather than temperature influenced the phylogeography of the endemic shrub Anarthrophyllum desideratum in the Patagonian steppe. J Biogeogr 40:168–182

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19:11–15

    Google Scholar 

  • Drummond AJ, Suchard MA, Xie D et al (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581

    Article  PubMed  CAS  Google Scholar 

  • Ehrhart C (2000) Die Gattung Calceolaria (Scrophulariaceae) in Chile. Biblioth Bot 153:1–283

    Google Scholar 

  • Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13:853–864

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    Article  CAS  Google Scholar 

  • Fernández RJ, Golluscio RA, Bisigato AJ et al (2002) Gap colonization in the Patagonian semidesert: seed bank and diaspore morphology. Ecography 25:336–344

    Article  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gaston KJ (2009) Geographic range limits: achieving synthesis. Proc R Soc B 276:1395–1406

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 8:521–523

    PubMed  CAS  Google Scholar 

  • Heled J, Drummond AJ (2008) Bayesian inference of population size history from multiple loci. BMC Evolut Biol 8:289

    Article  CAS  Google Scholar 

  • Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580

    Article  PubMed  CAS  Google Scholar 

  • Hewitt GM (2004) Genetic consequences of climatic oscillations in the quaternary. Philos Trans Ser B 359:183–195

    Article  CAS  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hua X, Wiens JJ (2013) How does climate influence speciation? Am Nat 182:1–12

    Article  PubMed  Google Scholar 

  • Karl SA, Avise JC (1993) PCR-based assays of Mendelian polymorphisms from anonymous single-copy nuclear DNA: techniques and applications for population genetics. Mol Biol Evol 10:342–361

    PubMed  CAS  Google Scholar 

  • Kébé K, Alvarez N, Tuda M et al (2017) Global phylogeography of the insect pest Callosobruchus maculatus (Coleoptera: Bruchinae) relates to the history of its main host, Vigna unguiculata. J Biogeogr 44:2515–2526

    Article  Google Scholar 

  • Lemey P, Rambaut A, Welch JJ et al (2010) Phylogeography takes a relaxed random walk in continuous space and time. Mol Biol Evol 27:1877–1885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lessa EP, D’Elía G, Pardiñas UFJ (2010) Genetic footprints of late quaternary climate change in the diversity of Patagonian-Fueguian rodents. Mol Ecol 19:3031–3037

    Article  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Lima-Ribeiro MS, Varela S, González-Hernández J et al (2015) Ecoclimate: a database of climate data from multiple models for past, present, and future for macroecologists and biogeographers. Biodivers Inform 10:1–21

    Article  Google Scholar 

  • Lopez A, Bonasora MG (2017) Phylogeography, genetic diversity and population structure in a Patagonian endemic plant. Ann Botany 9:plx017

    Google Scholar 

  • Losos JB, Ricklefs RE (2009) Adaptation and diversification on islands. Nature 457:830–836

    Article  PubMed  CAS  Google Scholar 

  • Mascó M, Noy-Meir I, Sérsic AN (2004) Geographic variation in flower color patterns within Calceolaria uniflora Lam. in Southern Patagonia. Plant Syst Evol 244:77–91

    Article  Google Scholar 

  • McCormack JE, Zellmer AJ, Knowles LL (2009) Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation?: insights from tests with niche models. Evolution 64:1231–1244

    PubMed  Google Scholar 

  • McDowall RM (2005) Falkland Islands biogeography: converging trajectories in the South Atlantic Ocean. J Biogeogr 32:49–62

    Article  Google Scholar 

  • Molau U (1988) Scrophulariaceae—Part I. Calceolarieae. Flora Neotropica 47:1–326

    Google Scholar 

  • Morrone JJ, Posada P (2005) Falklands: facts and fiction. J Biogeogr 32:2183–2187

    Article  Google Scholar 

  • Nascimento FF, Lazar A, Menezes AN et al (2013) The role of historical barriers in the diversification processes in open vegetation formations during the Miocene/Pliocene using an ancient rodent lineage as a model. PLoS ONE 8:e61924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia Univ. Press, New York

    Google Scholar 

  • Nicola MV, Sede SM, Pozner R et al (2014) Phylogeography and palaeodistribution modelling of Nassauvia subgenus Strongyloma (Asteraceae): exploring phylogeographical scenarios in the Patagonian steppe. Ecol Evol 4:4270–4286

    PubMed  PubMed Central  Google Scholar 

  • Noguerales V, Cordero PJ, Ortego J (2017) Testing the role of ancient and contemporary landscapes on structuring genetic variation in a specialist grasshopper. Ecol Evol 7:3110–3122

    Article  PubMed  PubMed Central  Google Scholar 

  • Nylinder S, Swnson U, Persson C et al (2012) A dated species-tree approach to the trans-Pacific disjunction of the genus Jovellana (Calceolariaceae, Lamiales). Taxon 61:381–391

    Google Scholar 

  • Otto-Bliesner BL, Marshall SJ, Overpeck JT et al (2006) Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311:1751–1753

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulou A, Jones AG, Hammond PM et al (2009) DNA taxonomy and phylogeography of beetles of the Falkland Islands (Islas Malvinas). Mol Phylogenet Evol 53:935–947

    Article  PubMed  CAS  Google Scholar 

  • Peterson AT, Papes M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72

    Article  Google Scholar 

  • Pfanzelt S, Albach DC, von Hagen KB (2017) Tabula rasa in the patagonian channels? The phylogeography of Oreobolus obtusangulus (Cyperaceae). Mol Ecol 26:4027–4044

    Article  PubMed  CAS  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Ponce JF, Rabassa J, Coronato A, Borromei AM (2011) Palaeogeographical evolution of the atlantic coast of pampa and patagonia from the last glacial maximum to the Middle Holocene. Biol J Linn Soc 103:363–379

    Article  Google Scholar 

  • QGIS Development Team (2016) QGIS geographic information system. Open source geospatial foundation project. Available from http://www.qgis.org/. Accessed Dec 2016

  • Rabassa J (2008) Late Cenozoic glaciations in Patagonia and Tierra del Fuego. In: Rabassa J (ed) The late Cenozoic of Patagonia and Tierra del Fuego. Elsevier, Oxford, pp 151–204

    Chapter  Google Scholar 

  • Rabassa J, Coronato A, Martınez O (2011) Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review. Biol J Linn Soc 103:316–335

    Article  Google Scholar 

  • Rambaut A, Drummond AJ (2008) FigTree: tree figure drawing tool, v1.2.2. Institute of Evolutionary Biology, University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree

  • Rambaut A, Drummond AJ (2009) Trac, hfer v1.5.0. MCMC trace analysis tool. http://beast.bio.ed.ac.uk/Tracer. Accessed Dec 2016

  • Ramos VA, Ghiglione J (2008) Tectonic evolution of the Patagonian Andes. In: Rabassa J (ed) The late Cenozoic of Patagonia and Tierra del Fuego. Elsevier, Oxford, pp 57–71

    Chapter  Google Scholar 

  • Rull V (2006) Quaternary speciation in the neotropics. Mol Ecol 15:4257–4259

    Article  PubMed  CAS  Google Scholar 

  • Ruzzante DE, Walde SJ, Gosse JC et al (2008) Climate control on ancestral population dynamics: insight from patagonian fish phylogeography. Mol Ecol 17:2234–2244

    Article  PubMed  CAS  Google Scholar 

  • Sérsic AN (2004) Pollination biology in the genus Calceolaria L. (Calceolariaceae). Stapfia 82:1–125

    Google Scholar 

  • Sérsic AN, Cocucci AA (1996) A remarkable case of ornithophily in Calceolaria: food bodies as rewards for a non-nectarivorous bird. Bot Acta 109:172–176

    Article  Google Scholar 

  • Sérsic AN, Cosacov A, Cocucci AA et al (2011) Emerging phylogeographical patterns of plants and terrestrial vertebrates from Patagonia. Biol J Linn Soc 103:475–494

    Article  Google Scholar 

  • Shaw J, Lickey EB, Beck JT et al (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166

    Article  PubMed  CAS  Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    Article  PubMed  CAS  Google Scholar 

  • Singer B, Ackert R, Guillou H (2004) 40Ar/39Ar and K-Ar chronology of pleistocene glaciations in Patagonia. GSA Bull 116:434–450

    Article  CAS  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stewart JR, Lister AM, Barnes I (2010) Refugia revisited: individualistic responses of species in space and time. Proc R Soc Lond B 277:661–671

    Article  Google Scholar 

  • Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123:598–601

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F et al (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Upson R, McAdam JH, Broughton DA et al (2012) Calceolaria fothergillii. The IUCN Red List of Threatened Species 2012: e.T15245657A15245660

  • Vuilleumier F (1991) A quantitative survey of speciation phenomena in Patagonian birds. Ornitol Neotr 2:5–28

    Google Scholar 

  • Watson DF (1992) Contouring: a guide to the analysis and display of spatial data. Pergamon Press, New York

    Google Scholar 

  • Werneck FP, Leite RN, Geurgas SR (2015) Biogeographic history and cryptic diversity of saxicolous Tropiduridae lizards endemic to the semiarid Caatinga. BMC Evolution Biol 15:94

    Article  Google Scholar 

  • Wiens JJ (2011) The niche, biogeography and species interactions. Philos Trans R Soc London B 366:2336–2350

    Article  Google Scholar 

Download references

Acknowledgements

A. C. and A. N. S. acknowledge the National Research Council of Argentina (CONICET) and the Universidad Nacional de Córdoba (UNC) as researchers, and M. C. B. as postdoctoral fellowship holder. We thank APN Argentina for permits to work within parks and reserves. The authors thank P. R. Riquez for allowing sampling in Ea. Verdadera Argentina, R. Upson, and the Falkland Conservation for providing samples and information on C. fothergillii, E. Dominguez for providing georeferences in Chile, A.A. Cocucci, S. Benitez Vieyra D. Carmona for field assistance, and M. C. Acosta for analytical support. Funding: National Research Council of Argentina [PIP 201101-00245, PIP 11220150100690CO] to A.N.S., the National Ministry of Science and Technology [FONCYT-PICT-2011-0837, PICT 2015-3089] to A.N.S., and A.E. was supported by the Swiss National Science Foundation [Grants P300P3 151141 and PBNEP3 140192]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Noemí Sérsic.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranzelli, M.C., Cosacov, A., Espíndola, A. et al. Echoes of the whispering land: interacting roles of vicariance and selection in shaping the evolutionary divergence of two Calceolaria (Calceolariaceae) species from Patagonia and Malvinas/Falkland Islands. Evol Ecol 32, 287–314 (2018). https://doi.org/10.1007/s10682-018-9938-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-018-9938-3

Keywords

Navigation