Skip to main content
Log in

Fruit defence syndromes: the independent evolution of mechanical and chemical defences

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Plants are prone to attack by a great diversity of antagonists against which they deploy various defence mechanisms, of which the two principle ones are mechanical and chemical defences. These defences are hypothesized to be negatively correlated due to either functional redundancy or a trade-off, i.e., plants which rely on increased mechanical defence should downregulate their degree of chemical defence and vice versa. A competing hypothesis is that different defences perform distinct functions and draw from different pools of resources, which should result in their independent evolution. We examine these competing hypotheses using two independent datasets of fleshy fruits we collected from Madagascar and Uganda. We sampled mechanical defences, indexed by fruit puncture resistance, and defensive defences, indexed by defensive volatile organic compounds, and examined their associations using phylogenetically-controlled models. In both systems, we found no correlation between mechanical and chemical defences, thus supporting the independent evolution hypothesis. This implies that fruit defence mechanisms reflect a more complex array of selection pressures and constraints than previously perceived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87:132–149. doi: 10.1890/0012-9658(2006)87[132:PDS]2.0.CO;2

  • Agrawal AA, Weber MG (2015) On the study of plant defence and herbivory using comparative approaches: how important are secondary plant compounds. Ecol Lett 18:985–991. doi:10.1111/ele.12482

    Article  PubMed  Google Scholar 

  • Aguirre LF, Herrel A, Van Damme R, Matthysen E (2003) The implications of food hardness for diet in bats. Funct Ecol 17:201–212. doi:10.1046/j.1365-2435.2003.00721.x

    Article  Google Scholar 

  • Ballhorn DJ, Godschalx AL, Kautz S (2013) Co-variation of chemical and mechanical defenses in lima bean (Phaseolus lunatus L.). J Chem Ecol 39:413–417. doi:10.1007/s10886-013-0255-6

    Article  CAS  PubMed  Google Scholar 

  • Ballhorn DJ, Godschalx AL, Smart SM et al (2014) Chemical defense lowers plant competitiveness. Oecologia 176:811–824. doi:10.1007/s00442-014-3036-1

    Article  PubMed  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745

    Google Scholar 

  • Chapman CA, Chapman LJ (2002) Foraging challenges of red colobus monkeys: influence of nutrients and secondary compounds. Comp Biochem Physiol Part A 133:861–875

    Article  Google Scholar 

  • Chen X, Cannon CH, Conklin-Brittan NL (2012) Evidence for a trade-off strategy in stone oak (Lithocarpus) seeds between physical and chemical defense highlights fiber as an important antifeedant. PLoS ONE 7:1–9. doi:10.1371/journal.pone.0032890

    CAS  Google Scholar 

  • Cipollini ML (2000) Secondary metabolites of vertebrate-dispersed fruits: evidence for adaptive functions. Rev Chil Hist Nat 73:421–440

    Article  Google Scholar 

  • Cipollini ML, Levey DJ (1997) Secondary metabolites of fleshy vertebrate-dispersed fruits: adaptive hypotheses and implications for seed dispersal. Am Nat 150:346–372

    Article  CAS  PubMed  Google Scholar 

  • Cipollini ML, Paulk E, Mink K et al (2004) Defense tradeoffs in fleshy fruits: effects of resource variation on growth, reproduction, and fruit secondary chemistry in Solanum carolinense. J Chem Ecol 30:1–17. doi:10.1023/B:JOEC.0000013179.45661.68

    Article  CAS  PubMed  Google Scholar 

  • Eichenberg D, Purschke O, Ristok C et al (2015) Trade-offs between physical and chemical carbon-based leaf defence: of intraspecific variation and trait evolution. J Ecol 103:1667–1679. doi:10.1111/1365-2745.12475

    Article  CAS  Google Scholar 

  • Ellenbogen JM, Payne JD, Stickgold R (2006) The role of sleep in declarative memory consolidation: passive, permissive, active or none? Curr Opin Neurobiol 16:716–722. doi:10.1016/j.conb.2006.10.006

    Article  CAS  PubMed  Google Scholar 

  • Eriksson O, Ehrlén J (1998) Secondary metabolites in fleshy fruits: are adaptive explanations needed? Am Nat 152:905–907

    Article  CAS  PubMed  Google Scholar 

  • Farmer EE (2014) Leaf defence. Oxford University Press, Oxford

    Book  Google Scholar 

  • Fischbach MA, Clardy J (2007) One pathway, many products. Nat Chem Biol 3:353–355

    Article  CAS  PubMed  Google Scholar 

  • Follett PA (2017) Insect-plant interactions: host selection, herbivory, and plant resistance - an introduction. Entomol Exp Appl 162:1–3. doi:10.1111/eea.12524

    Article  Google Scholar 

  • Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3:408–414. doi:10.1038/nchembio.2007.5

    Article  CAS  PubMed  Google Scholar 

  • Gipenberg S, Rota J, Kim J et al (2017) Seed polyphenols in a diverse tropical plant community. J Ecol. doi:10.1111/1365-2745.12814

    Google Scholar 

  • Gonçalves MF, Malheiro R, Casal S et al (2012) Influence of fruit traits on oviposition preference of the olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), on three Portuguese olive varieties (Cobrancosa, Madural and Verdeal Transmontana). Sci Hortic (Amsterdam) 145:127–135. doi:10.1016/j.scienta.2012.08.002

    Article  Google Scholar 

  • Hamilton AC (1981) A field guide to Uganda forest trees. Makerere University Printery, Kampala

    Google Scholar 

  • Hawes MC, Gunawardena U, Miyasaka S, Zhao X (2000) The role of root border cells in plant defense. Trends Plant Sci 5:128–133. doi:10.1016/S1360-1385(00)01556-9

    Article  CAS  PubMed  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335. doi:10.1086/417659

    Article  Google Scholar 

  • Herrera CM (1982) Defense of ripe fruit from pests: its significance in relation to plant-disperser interactions. Am Nat 120:218–241

    Article  Google Scholar 

  • Hodgkison R, Ayasse M, Häberlein C et al (2013) Fruit bats and bat fruits: the evolution of fruit scent in relation to the foraging behaviour of bats in the New and Old World tropics. Funct Ecol 27:1075–1084. doi:10.1111/1365-2435.12101

    Article  Google Scholar 

  • Jacobs GH (2009) Evolution of colour vision in mammals. Philos Trans R Soc Lond B Biol Sci 364:2957–2967. doi:10.1098/rstb.2009.0039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kariñho-Betancourt E, Agrawal AA, Halitschke R, Núñez-Farfán J (2015) Phylogenetic correlations among chemical and physical plant defenses change with ontogeny. New Phytol 206:796–806. doi:10.1111/nph.13300

    Article  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2000) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144. doi:10.1126/science.291.5511.2141

    Google Scholar 

  • Koricheva J, Nykänen H, Gianoli E (2004) Meta-analysis of trade-offs among plant antiherbivore defenses: are plants jacks-of-all-trades, masters of all? Am Nat 163:E64–E75. doi:10.1086/382601

    Article  PubMed  Google Scholar 

  • Lambert JE, Chapman CA, Wrangham RW, Lou Conklin-Brittain N (2004) Hardness of cercopithecine foods: implications for the critical function of enamel thickness in exploiting fallback foods. Am J Phys Anthropol 125:363–368. doi:10.1002/ajpa.10403

    Article  PubMed  Google Scholar 

  • Lasa R, Tadeo E, Dinorín LA et al (2017) Fruit firmness, superficial damage, and location modulate infestation by Drosophila suzukii and Zaprionus indianus: the case of guava in Veracruz, Mexico. Entomol Exp Appl 162:4–12. doi:10.1111/eea.12519

    Article  CAS  Google Scholar 

  • Lomáscolo SB, Levey DJ, Kimball RT et al (2010) Dispersers shape fruit diversity in Ficus (Moraceae). PNAS 107:14668–14672. doi:10.1073/pnas.1008773107

    Article  PubMed  PubMed Central  Google Scholar 

  • Moles AT, Peco B, Wallis IR et al (2013) Correlations between physical and chemical defences in plants: tradeoffs, syndromes, or just many different ways to skin a herbivorous cat? New Phytol 198:252–263. doi:10.1111/nph.12116

    Article  PubMed  Google Scholar 

  • Nevo O, Heymann EW, Schulz S, Ayasse M (2016) Fruit odor as a ripeness signal for seed-dispersing primates? a case study on four Neotropical plant species. J Chem Ecol 42:323–328. doi:10.1007/s10886-016-0687-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orme D, Freckleton RP, Thomas G, et al. (2012) Caper: comparative analyses of phylogenetics and evolution in R. R package version 0.5

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Pellmyr O, Thien LB (1986) Insect reproduction and floral fragrances: keys to the evolution of the angiosperms? Taxon 35:76–85

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Revell LJ (2012) Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol 3:217–223

    Article  Google Scholar 

  • Rodríguez A, Alquézar B, Peña L (2013) Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytol 197:36–48. doi:10.1111/j.1469-8137.2012.04382.x

    Article  PubMed  Google Scholar 

  • Schaefer HM, Ruxton GD (2011) Animal-plant communication. Oxford University Press, Oxford

    Book  Google Scholar 

  • Schaefer HM, Schmidt V, Winkler H (2003) Testing the defence trade-off hypothesis: how contents of nutrients and secondary compounds affect fruit removal. Oikos 102:318–328. doi:10.1034/j.1600-0706.2003.11796.x

    Article  Google Scholar 

  • Schatz GE (2001) Generic tree flora of Madagascar. Royal Botanic Gardens, Kew

    Google Scholar 

  • Stamopoulos DC, Damos P, Karagianidou G (2007) Bioactivity of five monoterpenoid vapours to Tribolium confusum (du Val) (Coleoptera: Tenebrionidae). J Stored Prod Res 43:571–577. doi:10.1016/j.jspr.2007.03.007

    Article  CAS  Google Scholar 

  • Takahara B, Takahashi KH (2017) Associative learning of color and firmness of oviposition substrates in Drosophila suzukii. Entomol Exp Appl 162:13–18. doi:10.1111/eea.12521

    Article  CAS  Google Scholar 

  • Tiansawat P, Davis AS, Berhow MA et al (2014) Investment in seed physical defence is associated with species’ light requirement for regeneration and seed persistence: evidence from Macaranga species in Borneo. PLoS ONE. doi:10.1371/journal.pone.0099691

    PubMed  PubMed Central  Google Scholar 

  • Twigg LE, Socha LV (1996) Physical versus chemical defence mechanisms in toxic Gastrolobium. Oecologia 108:21–28. doi:10.1007/BF00333210

    Article  CAS  PubMed  Google Scholar 

  • Unsicker SB, Kunert G, Gershenzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12:479–485. doi:10.1016/j.pbi.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  • Valenta K, Brown KA, Rafaliarison RR et al (2015) Sensory integration during foraging: the importance of fruit hardness, colour, and odour to brown lemurs. Behav Ecol Sociobiol. doi:10.1007/s00265-015-1998-6

    Google Scholar 

  • Valenta K, Nevo O, Martel C, Chapman CA (2017) Plant attractants: integrating insights from seed dispersal and pollination ecology. Evol Ecol 31:249. doi:10.1007/s10682-016-9870-3

    Article  Google Scholar 

  • Vorobyev M, Osorio D, Bennett ATD et al (1998) Tetrachromacy, oil droplets and bird plumage colours. J Comp Physiol 183:621–633

    Article  CAS  Google Scholar 

  • Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5:181–183. doi:10.1111/j.1471-8286.2004.00829.x

    Article  Google Scholar 

  • Westbrook JW, Kitajima K, Burleigh JG et al (2011) What makes a leaf tough? Patterns of correlated evolution between leaf toughness traits and demographic rates among 197 shade-tolerant woody species in a Neotropical forest. Am Nat 177:800–811. doi:10.1086/659963

    Article  PubMed  Google Scholar 

  • Whitehead SR, Obando Quesada MF, Bowers MD (2015) Chemical tradeoffs in seed dispersal: defensive metabolites in fruits deter consumption by mutualist bats. Oikos 125:927–937. doi:10.1111/oik.02210

    Article  Google Scholar 

  • Zangerl AR, Rutledge CE (1996) The probability of attack and patterns of constitutive and induced defense: a test of optimal defense theory. Am Nat 147:599–608

    Article  Google Scholar 

  • Zanne AE, Tank DC, Cornwell WK et al (2014) Three keys to the radiation of angiosperms into freezing environments. Nature 506:89–92. doi:10.1038/nature12872

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wang Z, Chang G et al (2016) Trade-off between seed defensive traits and impacts on interaction patterns between seeds and rodents in forest ecosystems. Plant Ecol 217:253–265. doi:10.1007/s11258-016-0566-0

    Article  Google Scholar 

  • Zhao D, Reddy KR, Kakani VG, Reddy VR (2005) Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. Eur J Agron 22:391–403. doi:10.1016/j.eja.2004.06.005

    Article  CAS  Google Scholar 

  • Züst T, Agrawal AA (2017) Trade-offs between plant growth and defense against insect herbivory: an emerging mechanistic synthesis. Annu Rev Plant Biol 68:10–11. doi:10.1146/annurev-arplant-042916-040856

    Article  Google Scholar 

Download references

Acknowledgements

We thank Lisa A. D’Agostino for her assistance in conducting the chemical analysis. We thank the Canada Research Chairs Program, Natural Science and Engineering Research Council of Canada, Fonds Québécois de la Recherche sur la Nature et les Technologies, the National Geographic Society for funding. ON was funded by a German Science Foundation grant (NE 2156/1-1) while working on this manuscript. We thank MICET and Madagascar National Parks, for permission to conduct this research in Madagascar. We are grateful to Paul Tsiveraza, Francette, Mamy Razafitsalama and Jean de-la-Dieu for contributions in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Nevo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevo, O., Valenta, K., Tevlin, A.G. et al. Fruit defence syndromes: the independent evolution of mechanical and chemical defences. Evol Ecol 31, 913–923 (2017). https://doi.org/10.1007/s10682-017-9919-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-017-9919-y

Keywords

Navigation