Skip to main content
Log in

Drivers of animal migration and implications in changing environments

Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Migratory species are widespread in terrestrial, aquatic and aerial environments, and are important both ecologically and economically. Since migration is an adaptive response to particular conditions, environmental changes (climate or otherwise) will potentially alter the selective pressures on movement behavior. Such changes may also interfere with, or disrupt, a species’ ability to migrate. In either case, environmental changes could lead to the reduction or total loss of a migration, yet we have little understanding of when to expect these outcomes to occur. Here, I argue that an understanding of both the proximate and ultimate drivers of migration is needed if we are to predict the fate of migrations under changing environmental conditions. I review what is currently known about the drivers of animal migration, but show that we also need a more complete synthesis of migratory patterns across diverse ecosystems and taxonomic groups. The current understanding of migration indicates that (1) drivers of migration vary across species and ecosystems, and (2) a species’ ability to adapt to environmental change successfully depends in part on its migration drivers. Together, these findings suggest a way forward for studying and generating predictions of how changing environmental conditions will differentially impact species by taxonomic group and geographic region of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Arkhipkin AI, Middleton DAJ, Sirota AM, Grzebielec R (2004) The effect of Falkland Current inflows on offshore ontogenetic migrations of the squid Loligo gahi on the southern shelf of the Falkland Islands. Estuar Coast Shelf Sci 60:11–22. doi:10.1016/j.ecss.2003.11.016

    Article  Google Scholar 

  • Avgar T, Street G, Fryxell JM (2014) On the adaptive benefits of mammal migration. Can J Zool 92:481–490. doi:10.1139/cjz-2013-0076

    Article  Google Scholar 

  • Báez JC, Bellido JJ, Ferri-Yáñez F et al (2011) The North Atlantic Oscillation and sea surface temperature affect loggerhead abundance around the Strait of Gibraltar. Sci Mar 75:571–575

    Article  Google Scholar 

  • Bauer S, Hoye BJ (2014) Migratory animals couple biodiversity and ecosystem functioning worldwide. Science. doi:10.1126/science.1242552

    Google Scholar 

  • Beebee TJC (1995) Amphibian breeding and climate. Nature 374:219–220

    Article  CAS  Google Scholar 

  • Berthold P (2001) Bird migration: a general survey, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Bildstein KL (2006) Migrating raptors of the world: their ecology and conservation. Cornell University Press, Ithaca

    Google Scholar 

  • Blake S, Yackulic CB, Cabrera F et al (2012) Vegetation dynamics drive segregation by body size in Galapagos tortoises migrating across altitudinal gradients. J Anim Ecol 82:310–321. doi:10.1111/1365-2656.12020

    Article  PubMed  Google Scholar 

  • Bock BC, Rand AS, Burghardt GM (1985) Seasonal migration and nesting site fidelity in the green iguana. Contrib Mar Sci 37:435–443

    Google Scholar 

  • Bolger DT, Newmark WD, Morrison TA, Doak DF (2008) The need for integrative approaches to understand and conserve migratory ungulates. Ecol Lett 11:63–77. doi:10.1111/j.1461-0248.2007.01109.x

    PubMed  Google Scholar 

  • Bonte D, Maelfait J-P, Hoffmann M (2000) Seasonal and diurnal migration patterns of the spider (Araneae) fauna of coastal grey dunes. Ekol (Bratisl) 19:5–16

    Google Scholar 

  • Boone RB, Thirgood SJ, Hopcraft JGC (2006) Serengeti wildebeest migratory patterns modeled from rainfall and new vegetation growth. Ecology 87:1987–1994

    Article  PubMed  Google Scholar 

  • Boyle WA, Norris DR, Guglielmo CG (2010) Storms drive altitudinal migration in a tropical bird. Proc R Soc Lond B Biol Sci 277:2511–2519. doi:10.1098/rspb.2010.0344

    Article  Google Scholar 

  • Brodersen J, Nilsson PA, Hansson L-A et al (2008) Condition-dependent individual decision-making determines cyprinid partial migration. Ecology 89:1195–1200

    Article  PubMed  Google Scholar 

  • Brower LP, Malcolm SB (1991) Animal migrations: endangered phenomena. Am Zool 31:265–276

    Article  Google Scholar 

  • Brown GP, Brooks RJ (1994) Characteristics of and fidelity to hibernacula in a northern population of snapping turtles, Chelydra serpentina. Copeia 1994:222. doi:10.2307/1446689

    Article  Google Scholar 

  • Bull JJ, Shine R (1979) Iteroparous animals that skip opportunities for reproduction. Am Nat 114(2):296–303

    Article  Google Scholar 

  • Chambers LE, Hughes L, Weston MA (2005) Climate change and its impact on Australia’s avifauna. Emu 105:1–20. doi:10.1071/MU04033

    Article  Google Scholar 

  • Chapman BB, Brönmark C, Nilsson J (2011) The ecology and evolution of partial migration. Oikos 120:1764–1775

    Article  Google Scholar 

  • Chapman BB, Skov C, Hulthén K et al (2012) Partial migration in fishes: definitions, methodologies and taxonomic distribution. J Fish Biol 81:479–499. doi:10.1111/j.1095-8649.2012.03349.x

    Article  CAS  PubMed  Google Scholar 

  • Chapman JW, Reynolds DR, Wilson K (2015) Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol Lett 18:287–302. doi:10.1111/ele.12407

    Article  PubMed  Google Scholar 

  • Chelini M-C, Willemart RH, Gnaspini P (2011) Caves as a winter refuge by a Neotropical harvestman (Arachnida, Opiliones). J Insect Behav 24:393–398. doi:10.1007/s10905-011-9264-x

    Article  Google Scholar 

  • Cohen DS (1967) Optimization of seasonal migratory behavior. Am Nat 101:5–17. doi:10.2307/2459211

    Article  Google Scholar 

  • Common IFB (1954) A study of the ecology of the adult bogong moth, Agrotis infusa (Boisd) (Lepidoptera: Noctuidae), with special reference to its behaviour during migration and aestivation. Aust J Zool 2:223–263

    Article  Google Scholar 

  • Craig PC, Poulin VA (1975) Movements and growth of Arctic grayling (Thymallus arcticus) and juvenile Arctic char (Salvelinus alpinus) in a small arctic stream, Alaska. J Fish Res Board Can 32:689–697

    Article  Google Scholar 

  • Dingle H (1996) Migration: the biology of life on the move, 1st edn. Oxford University Press, Oxford

    Google Scholar 

  • Dingle H (2014) Migration: the biology of life on the move, 2nd edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Durant SM, Caro TM, Collins DA et al (1988) Migration patterns of Thomson’s gazelles and cheetahs on the Serengeti Plains. Afr J Ecol 26:257–268

    Article  Google Scholar 

  • Engstedt O, Stenroth P, Larsson P et al (2010) Assessment of natal origin of pike (Esox lucius) in the Baltic Sea using Sr: Ca in otoliths. Environ Biol Fishes 89:547–555. doi:10.1007/s10641-010-9686-x

    Article  Google Scholar 

  • Fancy SG, Pank LF, Whitten KR, Regelin WL (1989) Seasonal movements of caribou in arctic Alaska as determined by satellite. Can J Zool 67:644–650

    Article  Google Scholar 

  • Fleming TH, Eby P (2003) Ecology of bat migration. Bat ecology. University of Chicago Press, Chicago

    Google Scholar 

  • Fryxell JM, Greever J, Sinclair ARE (1988) Why are migratory ungulates so abundant? Am Nat 131:781–798

    Article  Google Scholar 

  • George RW (2005) Evolution of life cycles, including migration, in spiny lobsters (Palinuridae). N Z J Mar Freshw Res 39:503–514

    Article  Google Scholar 

  • Gillis EA, Green DJ, Middleton HA, Morrissey CA (2008) Life history correlates of alternative migratory strategies in American Dippers. Ecology 89:1687–1695

    Article  PubMed  Google Scholar 

  • Gilpin J (1786) Observations on the annual passage of herrings. Trans Am Philos Soc. doi:10.2307/1005192

    Google Scholar 

  • Gorbach KR, Benbow ME, McIntosh MD, Burky AJ (2012) Dispersal and upstream migration of an amphidromous neritid snail: implications for restoring migratory pathways in tropical streams—neritidae dispersal and upstream migration. Freshw Biol 57:1643–1657. doi:10.1111/j.1365-2427.2012.02826.x

    Article  Google Scholar 

  • Gresh T, Lichatowich J, Schoonmaker P (2000) An estimation of historic and current levels of salmon production in the Northeast Pacific ecosystem: evidence of a nutrient deficit in the freshwater systems of the Pacific Northwest. Fisheries 25:15–21. doi:10.1577/1548-8446(2000)025<0015:AEOHAC>2.0.CO;2

    Article  Google Scholar 

  • Griswold CK, Taylor CM, Norris DR (2011) The equilibrium population size of a partially migratory population and its response to environmental change. Oikos 120:1847–1859. doi:10.1111/j.1600-0706.2011.19435.x

    Article  Google Scholar 

  • Gross MR, Coleman RM, McDowall RM (1988) Aquatic productivity and the evolution of diadromous fish migration. Science 239:1291–1293

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez D, Wilson RJ (2014) Climate conditions and resource availability drive return elevational migrations in a single-brooded insect. Oecologia 175:861–873

    Article  PubMed  Google Scholar 

  • Harden Jones FR (1968) Fish migration. Edward Arnold Publishers, London

    Google Scholar 

  • Harris G, Thirgood SJ, Hopcraft JGC et al (2009) Global decline in aggregated migrations of large terrestrial mammals. Endanger Species Res 7:55–76. doi:10.3354/esr00173

    Article  Google Scholar 

  • Hartnoll RG, Mackintosh T, Pelembe TJ (2006) Johngarthia lagostoma (H. Milne Edwards, 1837) on Ascension Island: a very isolated land crab population. Crustaceana 79:197–215

    Article  Google Scholar 

  • Hays GC (2000) The implications of variable remigration intervals for the assessment of population size in marine turtles. J Theor Biol 206:221–227

    Article  CAS  PubMed  Google Scholar 

  • Heape W (1931) Emigration, migration and nomadism. Heffer and Sons, Cambridge

    Google Scholar 

  • Hebblewhite M, Merrill EH (2009) Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90:3445–3454

    Article  PubMed  Google Scholar 

  • Hicks JW (1985) The breeding behaviour and migrations of the terrestrial crab Gecarcoidea natalis (Decapoda: Brachyura). Aust J Zool 33:127–142

    Article  Google Scholar 

  • Hiddink JG (2003) Modelling the adaptive value of intertidal migration and nursery use in the bivalve Macoma balthica. Mar Ecol Prog Ser 252:173–185

    Article  Google Scholar 

  • Holland RA, Wikelski M, Wilcove DS (2006) How and why do insects migrate? Science 313:794–796

    Article  CAS  PubMed  Google Scholar 

  • Huse G, Fernö A, Holst JC (2010) Establishment of new wintering areas in herring co-occurs with peaks in the “first time/repeat spawner” ratio. Mar Ecol Prog Ser 409:189–198

    Article  Google Scholar 

  • Inouye D, Barr B, Armitage KB, Inouye BD (2000) Climate change is affecting altitudinal migrants and hibernating species. Proc Natl Acad Sci USA 97:1630–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn AE, Levey DJ, Smith KG (2004) Reflections across hemispheres: a system-wide approach to New World bird migration. Auk 121:1005–1013

    Article  Google Scholar 

  • Jenni L, Kéry M (2003) Timing of autumn bird migration under climate change: advances in long-distance migrants, delays in short-distance migrants. Proc R Soc Lond B Biol Sci 270:1467–1471. doi:10.1098/rspb.2003.2394

    Article  Google Scholar 

  • Kawabata A, Yatsu A, Ueno Y et al (2006) Spatial distribution of the Japanese common squid, Todarodes pacificus, during its northward migration in the western North Pacific Ocean. Fish Oceanogr 15:113–124. doi:10.1111/j.1365-2419.2006.00356.x

    Article  Google Scholar 

  • Kay WR (2004) Movements and home ranges of radio-tracked Crocodylus porosus in the Cambridge Gulf region of Western Australia. Wildl Res 31:495–508. doi:10.1071/WR04037

    Article  Google Scholar 

  • Kelleher KE, Tester JR (1969) Homing and survival in the Manitoba toad, Bufo hemiophrys, in Minnesota. Ecology 50:1040–1048. doi:10.2307/1936895

    Article  Google Scholar 

  • Keller S, Valls M, Hidalgo M, Quetglas A (2014) Influence of environmental parameters on the life-history and population dynamics of cuttlefish Sepia officinalis in the western Mediterranean. Estuar Coast Shelf Sci 145:31–40. doi:10.1016/j.ecss.2014.04.016

    Article  Google Scholar 

  • Kobari T, Ikeda T (2001) Ontogenetic vertical migration and life cycle of Neocalanus plumchrus (Crustacea: Copepoda) in the Oyashio region, with notes on regional variations in body sizes. J Plankton Res 23:287–302

    Article  Google Scholar 

  • Lack D (1943) The problem of partial migration. Br Birds Lond 37:122–130

    Google Scholar 

  • Lack D (1944) The problem of partial migration (concluded). Br Birds Lond 37:143–150

    Google Scholar 

  • Lack D (1954) The natural regulation of animal numbers. Oxford University Press, Oxford

  • Lamoureux VS, Madison DM (1999) Overwintering habitats of radio-implanted green frogs, Rana clamitans. J Herpetol 33:430–435

    Article  Google Scholar 

  • Lehikoinen E, Sparks TH, Zalakevicius M (2004) Arrival and departure dates. Adv Ecol Res 35:1–31. doi:10.1016/S0065-2504(04)35001-4

    Article  Google Scholar 

  • Lehikoinen A, Kilpi M, Öst M (2006) Winter climate affects subsequent breeding success of common eiders. Glob Change Biol 12:1355–1365

    Article  Google Scholar 

  • Lehodey P, Alheit J, Barange M et al (2006) Climate variability, fish, and fisheries. J Clim 19:5009–5030

    Article  Google Scholar 

  • Liu H-C, Jeng M-S (2005) Reproduction of Epigrapsus notatus (Brachyura: Gecarcinidae) in Taiwan. J Crustac Biol 25:135–140

    Article  Google Scholar 

  • Liu H-C, Jeng M-S (2007) Some reproductive aspects of Gecarcoidea lalandii (Brachyura: Gecarcinidae) in Taiwan. Zool Stud 46:347–354

    Google Scholar 

  • Lockyer CH, Brown SG (1981) The migration of whales. In: Aidley DJ (ed) Animal migration. Cambridge Univ Press, Cambridge, pp 105–137

    Google Scholar 

  • Lucas MC, Baras E (2001) Migration of freshwater fishes. Blackwell Science Ltd, Oxford

    Book  Google Scholar 

  • Lundberg P (1987) Partial bird migration and evolutionarily stable strategies. J Theor Biol 125:351–360

    Article  Google Scholar 

  • Luschi P, Hays GC, Papi F (2003) A review of long-distance movements by marine turtles, and the possible role of ocean currents. Oikos 103:293–302

    Article  Google Scholar 

  • Macmynowski DP, Root TL, Ballard G, Geupel GR (2007) Changes in spring arrival of Nearctic-Neotropical migrants attributed to multiscalar climate. Glob Change Biol 13:2239–2251

    Article  Google Scholar 

  • Madsen T, Shine R (1996) Seasonal migration of predators and prey: a study of pythons and rats in tropical Australia. Ecology 77:149–156

    Article  Google Scholar 

  • McDowall RM (1987) The occurrence and distribution of diadromy among fishes. Am Fish Soc Symp 1:1–13

    Google Scholar 

  • McDowall RM (2007) On amphidromy, a distinct form of diadromy in aquatic organisms. Fish Fish 8:1–13

    Article  Google Scholar 

  • McGuire LP, Boyle WA (2013) Altitudinal migration in bats: evidence, patterns, and drivers. Biol Rev 88:767–786. doi:10.1111/brv.12024

    Article  PubMed  Google Scholar 

  • McNeil JN (1987) The true armyworm, Pseudaletia unipuncta: a victim of the pied piper or a seasonal migrant? Insect Sci Appl 8:591–597

    Google Scholar 

  • Moore JA, Daugherty CH, Nelson NJ (2009) Large male advantage: phenotypic and genetic correlates of territoriality in tuatara. J Herpetol 43:570–578. doi:10.1670/08-290.1

    Article  Google Scholar 

  • Newton I (2008) The migration ecology of birds. Academic Press, Amsterdam

    Google Scholar 

  • Nikolsky GV (1963) The ecology of fishes. Academic Press, New York City

    Google Scholar 

  • Northcote TG (1978) Migratory strategies and production in freshwater fishes. In: Gerking SD (ed) Ecology of freshwater fish production. Wiley, New York, pp 326–359

    Google Scholar 

  • Ouboter PE, Nanhoe LMR (1988) Habitat selection and migration of Caiman crocodilus crocodilus in a swamp and swamp-forest habitat in northern Suriname. J Herpetol 22:283–294. doi:10.2307/1564151

    Article  Google Scholar 

  • Pachauri RK, Mayer L, Intergovernmental Panel on Climate Change (eds) (2015) Climate change 2014: synthesis report. Intergovernmental Panel on Climate Change, Geneva

    Google Scholar 

  • Paulini E (1963) Field observations on the upstream migration of Australorbis glabratus. Bull World Health Organ 29:838–841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinshow B, Fedak MA, Battles DR, Schhmidt-Nielsen K (1976) Energy expenditure for thermoregulation and locomotion in emperor penguins. Am J Physiol 231:903–912

    CAS  PubMed  Google Scholar 

  • Poulin R, Closs GP, Lill AWT et al (2012) Migration as an escape from parasitism in New Zealand galaxiid fishes. Oecologia 169:955–963. doi:10.1007/s00442-012-2251-x

    Article  PubMed  Google Scholar 

  • Pulido F, Berthold P (2010) Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population. Proc Natl Acad Sci USA 107:7341–7346. doi:10.1073/pnas.0910361107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quiñones J, González Carman V, Zeballos J et al (2010) Effects of El Niño-driven environmental variability on black turtle migration to Peruvian foraging grounds. Hydrobiologia 645:69–79. doi:10.1007/s10750-010-0225-8

    Article  CAS  Google Scholar 

  • Robinson A, Crick HQ, Learmonth JA et al (2009) Travelling through a warming world: climate change and migratory species. Endanger Species Res 7:87–99. doi:10.3354/esr00095

    Article  Google Scholar 

  • Rodhouse PG, Barton J, Hatfield EMC, Symon C (1995) Illex argentinus: life cycle, population structure, and fishery. ICES Mar Sci Symp 199:425–432

    Google Scholar 

  • Rose GA, Leggett WC (1988) Atmosphere-ocean coupling and Atlantic cod migrations: effects of wind-forced variations in sea temperatures and currents in nearshore distributions and catch rates of Gadus morhua. Can J Fish Aquat Sci 45:1234–1243

    Article  Google Scholar 

  • Rosenzweig C, Karoly D, Vicarelli M et al (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357. doi:10.1038/nature06937

    Article  CAS  PubMed  Google Scholar 

  • Russell AP, Bauer AM, Johnson MK, Elewa MAT (2005) Migration in amphibians and reptiles: an overview of patterns and orientation mechanisms in relation to life history strategies. Migration of organisms. Springer, Berlin, pp 151–203

    Chapter  Google Scholar 

  • Satterfield DA, Maerz JC, Altizer S (2015) Loss of migratory behaviour increases infection risk for a butterfly host. Proc R Soc B Biol Sci. doi:10.1098/rspb.2014.1734

    Google Scholar 

  • Schneider DW, Lyons J (1993) Dynamics of upstream migration in two species of tropical freshwater snails. J N Am Benthol Soc 12:3. doi:10.2307/1467680

    Article  Google Scholar 

  • Shackell NL, Carscadden JE, Miller DS (1994) Migration of pre-spawning capelin (Mallotus villosus) as related to temperature on the northern Grand Bank, Newfoundland. ICES J Mar Sci 51:107–114

    Article  Google Scholar 

  • Shaw AK (2012) Modeling motives for movement: theory for why animals migrate. Princeton University, Princeton

    Google Scholar 

  • Shaw AK, Kelly KA (2013) Linking El Niño, local rainfall, and migration timing in a tropical migratory species. Glob Change Biol 19:3283–3290. doi:10.1111/gcb.12311

    Article  Google Scholar 

  • Shaw AK, Levin SA (2011) To breed or not to breed: a model of partial migration. Oikos 120:1871–1879. doi:10.1111/j.1600-0706.2011.19443.x

    Article  Google Scholar 

  • Shaw AK, Levin SA (2013) The evolution of intermittent breeding. J Math Biol 66:685–703. doi:10.1007/s00285-012-0603-0

    Article  PubMed  Google Scholar 

  • Sillett TS, Holmes RT, Sherry TW (2000) Impacts of a global climate cycle on population dynamics of a migratory songbird. Science 288:2040–2042

    Article  CAS  PubMed  Google Scholar 

  • Sims DW, Genner MJ, Southward AJ, Hawkins SJ (2001) Timing of squid migration reflects North Atlantic climate variability. Proc R Soc Lond B Biol Sci 268:2607–2611

    Article  CAS  Google Scholar 

  • Sims DW, Southall EJ, Richardson AJ et al (2003) Seasonal movements and behaviour of basking sharks from archival tagging: no evidence of winter hibernation. Mar Ecol Prog Ser 248:187–196

    Article  Google Scholar 

  • Sims DW, Wearmouth VJ, Genner MJ et al (2004) Low-temperature-driven early spawning migration of a temperate marine fish. J Anim Ecol 73:333–341

    Article  Google Scholar 

  • Sinsch U (1988) Seasonal changes in the migratory behaviour of the toad Bufo bufo: direction and magnitude of movements. Oecologia 76:390–398

    Article  Google Scholar 

  • Smith BD, McFarlane GA, Saunders MW (1990) Variation in Pacific hake (Merluccius productus) summer length-at-age near Southern Vancouver and its relationship to fishing and oceanography. Can J Fish Aquat Sci 47:2195–2211

    Article  Google Scholar 

  • Southwood TRE (1962) Migration of terrestrial arthropods in relation to habitat. Biol Rev 37:171–211

    Article  Google Scholar 

  • Southwood A, Avens L (2010) Physiological, behavioral, and ecological aspects of migration in reptiles. J Comp Physiol B 180:1–23. doi:10.1007/s00360-009-0415-8

    Article  PubMed  Google Scholar 

  • Srygley RB, Dudley R, Oliviera EG et al (2010) El Niño and dry season rainfall influence hostplant phenology and an annual butterfly migration from Neotropical wet to dry forests. Glob Change Biol 16:936–945

    Article  Google Scholar 

  • Stefanescu C, Askew RR, Corbera J, Shaw MR (2012) Parasitism and migration in southern Palaearctic populations of the painted lady butterfly, Vanessa cardui (Lepidoptera: Nymphalidae). Eur J Entomol 109:85–94

    Article  Google Scholar 

  • Stephens PA, Boyd IL, McNamara JM, Houston AI (2009) Capital breeding and income breeding: their meaning, measurement, and worth. Ecology 90:2057–2067

    Article  PubMed  Google Scholar 

  • Stokesbury MJ, Teo SLH, Seitz A et al (2004) Movement of Atlantic bluefin tuna (Thunnus thynnus) as determined by satellite tagging experiments initiated off New England. Can J Fish Aquat Sci 61:1976–1987. doi:10.1139/f04-130

    Article  Google Scholar 

  • Studds CE, Marra PP (2011) Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc R Soc Lond B Biol Sci 278:3437–3443. doi:10.1098/rspb.2011.0332

    Article  Google Scholar 

  • Swan BL (2005) Migrations of adult horseshoe crabs, Limulus polyphemus, in the Middle Atlantic Bight: a 17-year tagging study. Estuaries 28:28–40

    Article  Google Scholar 

  • Talbot LM, Talbot MH (1963) The wildebeest in western Masailand, East Africa. Wildl Monogr 12:3–88

    Google Scholar 

  • Taylor CM, Norris DR (2007) Predicting conditions for migration: effects of density dependence and habitat quality. Biol Lett 3:280–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorpe JE (1994) Reproductive strategies in Atlantic salmon, Salmo salar L. Aquac Fish Manag 25:77–87

    Google Scholar 

  • Uvarov BP (1957) The aridity factor in the ecology of locusts and grasshoppers of the Old World. Arid Zone Res 8:164–198

    Google Scholar 

  • Van Buskirk J, Mulvihill RS, Leberman RC (2009) Variable shifts in spring and autumn migration phenology in North American songbirds associated with climate change. Glob Change Biol 15:760–771. doi:10.1111/j.1365-2486.2008.01751.x

    Article  Google Scholar 

  • Walsh M, Reid DG, Turrell WR (1995) Understanding mackerel migration off Scottland: tracking with echosounders and commercial data, and including environmental correlates and behavior. ICES J Mar Sci 52:925–939

    Article  Google Scholar 

  • Walton LR, Cluff HD, Paquet PC, Ramsay MA (2001) Movement patterns of barren-ground wolves in the central Canadian Arctic. J Mammal 82:867–876

    Article  Google Scholar 

  • Werner DI (1983) Reproduction in the iguana Conolophus subcristatus on Fernandina Island, Galapagos: clutch size and migration costs. Am Nat 121:757–775

    Article  Google Scholar 

  • Westbrook JK, Nagoshi RN, Meagher RL et al (2016) Modeling seasonal migration of fall armyworm moths. Int J Biometeorol 60:255–267. doi:10.1007/s00484-015-1022-x

    Article  CAS  PubMed  Google Scholar 

  • Wilcove DS, Wikelski M (2008) Going, going, gone: is animal migration disappearing? PLoS Biol 6:1361–1364. doi:10.1371/journal.pbio.0060188

    Article  CAS  Google Scholar 

  • Williams CB (1957) Insect migration. Annu Rev Entomol 2:163–180

    Article  Google Scholar 

  • Wilson SG, Taylor JG, Pearce AF (2001) The seasonal aggregation of whale sharks at Ningaloo Reef, Western Australia: currents, migrations and the El Niño/Southern Oscillation. Environ Biol Fishes 61:1–11

    Article  Google Scholar 

  • Wilson SG, Polovina JJ, Stewart BS, Meekan MG (2006) Movements of whale sharks (Rhincodon typus) tagged at Ningaloo Reef, Western Australia. Mar Biol 148:1157–1166

    Article  Google Scholar 

  • Wolcott TG, Wolcott DL (1985) Factors influencing the limits of migratory movements in terrestrial crustaceans. Contrib Mar Sci 68:257–273

    Google Scholar 

Download references

Acknowledgments

I thank G. Gnanadesikan, A. Smith and D. Stanton for discussion of ideas, and K. Meyer, E. Strombom, L. Sullivan, and two reviewers for comments on previous versions. The general ideas were initially conceived under partial support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0646086 (at Princeton University), and the manuscript was fully developed under partial support by startup funds from the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison K. Shaw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw, A.K. Drivers of animal migration and implications in changing environments. Evol Ecol 30, 991–1007 (2016). https://doi.org/10.1007/s10682-016-9860-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-016-9860-5

Keywords

Navigation