Advertisement

Evolutionary Ecology

, Volume 30, Issue 1, pp 105–121 | Cite as

Trait-mediated interaction leads to structural emergence in mutualistic networks

  • H. O. Minoarivelo
  • C. Hui
Original Paper

Abstract

As asymmetric structures of mutualistic networks can potentially contribute to system resilience, elucidating drivers behind the emergence of particular network architectures remains a major endeavour in ecology. Here, using an eco-evolutionary model for bipartite mutualistic networks with trait-mediated interactions, we explore how particular levels of connectance, nestedness and modularity are affected by three network assembly forces: resource accessibility, tolerance to trait difference between mutualistic pairs and competition intensity. We found that a moderate accessibility to intra-trophic resources and cross-trophic mutualistic support can result in a highly nested web, while low tolerance to trait difference between interacting pairs leads to a high level of modularity. Network-level trait complementarity leads to low connectance and high modularity, while network-level specialization can result in nested structures. Consequently, we argue that the interplay of ecological and evolutionary processes through trait-mediated interactions can explain these widely observed architectures in mutualistic networks.

Keywords

Network architecture Nestedness Connectance Compartmentalization Modularity Trait complementarity Network specialization 

Notes

Acknowledgments

We are grateful to Ulf Dieckmann, Åke Brännström, Feng Zhang, Pietro Landi for constructive comments, and to Beverley Laniewski for English editing. CH is a South African Research Chair in Mathematical and Theoretical Physical Biosciences, funded by the South African National Research Foundation (Nos. 76912 and 89967); HOM receives a PhD Scholarship from the Deutscher Akademischer Austausch Dienst (DAAD; German Academic Exchange Service). The project is also partially supported by the Australian Research Council (Discovery Project DP150103017).

Supplementary material

10682_2015_9798_MOESM1_ESM.docx (23.6 mb)
Supplementary material 1 (DOCX 24203 kb)
10682_2015_9798_MOESM2_ESM.xlsx (403 kb)
Model parameters and network metrics (as a separated XLSX file). (XLSX 402 kb)

References

  1. Abrams PA (2007) Defining and measuring the impact of dynamic traits on interspecific interactions. Ecology 88:2555–2562CrossRefPubMedGoogle Scholar
  2. Abrams PA et al (1996) The role of indirect effects in food webs. In: Polis G, Winemiller KO (eds) Food webs: integration of patterns and dynamics. Chapman and Hall, New York, pp 371–395CrossRefGoogle Scholar
  3. Almeida-Neto M, Ulrich W (2011) A straightforward computational approach for measuring nestedness using quantitative matrices. Environ Model Softw 26:173–178CrossRefGoogle Scholar
  4. Bascompte J, Jordano P (2007) Plant–animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593CrossRefGoogle Scholar
  5. Bascompte J, Jordano P, Melián CJ, Olesen JM (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci USA 100:9383–9387PubMedCentralCrossRefPubMedGoogle Scholar
  6. Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433CrossRefPubMedGoogle Scholar
  7. Bastolla UM et al (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–1020CrossRefPubMedGoogle Scholar
  8. Berlow EL et al (2004) Interaction strengths in food webs: issues and opportunities. J Anim Ecol 73:585–598CrossRefGoogle Scholar
  9. Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:1–12CrossRefGoogle Scholar
  10. Bolker B et al (2003) Connecting theoretical and empirical studies of trait-mediated interactions. Ecology 84:1101–1114CrossRefGoogle Scholar
  11. Bolnick DI, Preisser EL (2005) Resource competition modifies the strength of trait-mediated predator-prey interactions: a meta-analysis. Ecology 86:2771–2779CrossRefGoogle Scholar
  12. Boyero L et al. (2015) Latitudinal gradient of nestedness and its potential drivers in stream detritivores. Ecography 38:949–955CrossRefGoogle Scholar
  13. Brännströms Å, Loeuille N, Loreau M (2011) Emergence and maintenance of biodiversity in an evolutionary food-web model. Theor Ecol 4:467–478CrossRefGoogle Scholar
  14. Bürger R, Schneider KA, Willensdorfer M (2006) The conditions for speciation through intraspecific competition. Evolution 60:2185–2206CrossRefPubMedGoogle Scholar
  15. Campbell C, Yang S, Albert R, Shea K (2015) Plant–pollinator community network response to species invasion depends on both invader and community characteristics. Oikos 124:406–413CrossRefGoogle Scholar
  16. Chamberlain SA, Kilpatrick JF, Holland JN (2010) Do extrafloral nectar resources, species abundances, and body sizes contribute to the structure of ant-plant mutualistic networks? Oecologia 164:741–750CrossRefPubMedGoogle Scholar
  17. Chamberlain SA et al (2014) Traits and phylogenetic history contribute to network structure across Canadian plant–pollinator communities. Oecologia 176:545–556CrossRefPubMedGoogle Scholar
  18. Clauset AM, Newman MEJ (2008) Hierarchical structure and the prediction of missing links in networks. Nature 453:98–101CrossRefPubMedGoogle Scholar
  19. Dalsgaard B et al (2013) Historical climate-change influences modularity and nestedness of pollination networks. Ecography 36:1331–1340CrossRefGoogle Scholar
  20. Dercole F, Rinaldi S (2008) Analysis of evolutionary processes: the adaptive dynamics approach and its applications. Princeton Univ Press, PrincetonGoogle Scholar
  21. Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivative from stochastic ecological processes. J Math Biol 34:579–612CrossRefPubMedGoogle Scholar
  22. Doebeli M, Dieckmann U (2000) Evolutionary branching and sympatric speciation caused by different types of ecological interactions. Am Nat 156:S77–S101CrossRefGoogle Scholar
  23. Doebeli M, Ispolatov I (2011) Complexity and diversity. Science 328:494–497CrossRefGoogle Scholar
  24. Donatti CI et al (2011) Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol Lett 14:773–781CrossRefPubMedGoogle Scholar
  25. Dormann CF, Strauβ R (2014) A method for detecting modules in quantitative bipartite networks. Methods Ecol Evol 5:90–98CrossRefGoogle Scholar
  26. Dormann CF, Gruber B, Fruend J (2008) Introducing the bipartite package: analysing ecological networks. R News 8:8–11Google Scholar
  27. Egas M, Sabelis MW, Dieckmann U (2005) Evolution of specialization and ecological character displacement of herbivores along a gradient of plant quality. Evolution 59:507–520CrossRefPubMedGoogle Scholar
  28. Encinas-Viso F, Revilla TA, Rampal SE (2012) Phenology drives mutualistic network structure and diversity. Ecol Lett 15:198–208CrossRefPubMedGoogle Scholar
  29. Encinas-Viso F, Melián CJ, Rampal SE (2014) The emergence of network structure, complementarity and convergence from basic ecological and genetic processes. BioRxiv 007393. doi: 10.1101/007393
  30. Fort H, Mungan M (2015) Predicting abundances of plants and pollinators using a simple compartmental mutualistic model. Proc R Soc B Biol Sci 282:20150592CrossRefGoogle Scholar
  31. Fortuna MA et al (2010) Nestedness versus modularity in ecological networks: two sides of the same coin. J Anim Ecol 79:811–817PubMedGoogle Scholar
  32. Geritz SAH, Kisdi É, Meszéna G, Metz JAJ (1998) Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12:35–57CrossRefGoogle Scholar
  33. Guimarães PR et al (2007) Build-up mechanisms determining the topology of mutualistic networks. J Theor Biol 249:181–189CrossRefPubMedGoogle Scholar
  34. Guimarães Jr PR, Jordano P, Thompson JN (2011) Evolution and coevolution in mutualistic networks. Ecol Lett 14:877–885CrossRefPubMedGoogle Scholar
  35. Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398CrossRefGoogle Scholar
  36. Hui C et al (2013) Increasing functional modularity with residence time in the co-distribution of native and introduced vascular plants. Nat Commun 4:2454PubMedCentralCrossRefPubMedGoogle Scholar
  37. Hui C, Minoarivelo HO, Nuwagaba S, Ramanantoanina A (2015) Adaptive diversification in coevolutionary systems. In: Pontarotti P (ed) Evolutionary biology: biodiversification from genotype to phenotype. Springer, Berlin, pp 167–186CrossRefGoogle Scholar
  38. Ito H, Ikegami T (2006) Food-web formation with recursive evolutionary branching. J Theor Biol 238:1–10CrossRefPubMedGoogle Scholar
  39. Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolutionary networks of plant animal interactions. Ecol Lett 6:69–81CrossRefGoogle Scholar
  40. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1):299–305CrossRefPubMedGoogle Scholar
  41. Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12. http://cran.r-project.org/web/packages/FD (Accessed April 2015)
  42. Loeuille L, Loreau M (2005) Evolutionary emergence of size-structured food webs. Proc Natl Acad Sci USA 102:5761–5766PubMedCentralCrossRefPubMedGoogle Scholar
  43. McQuaid CF, Britton NF (2013a) Network dynamics contribute to structure: nestedness in mutualistic networks. Bull Math Biol 75:2372–2388CrossRefPubMedGoogle Scholar
  44. McQuaid CF, Britton NF (2013b) Host-parasite nestedness: a result of co-evolving trait values. Ecol Complex 13:53–59CrossRefGoogle Scholar
  45. Mello MAR et al (2011) The modularity of seed dispersal: differences in structure and robustness between bat and bird-fruit networks. Oecologia 167:131–140CrossRefPubMedGoogle Scholar
  46. Metz JAJ, Nisbet R, Geritz SAH (1992) How should we define ‘fitness’ for general ecological scenarios? Trends Ecol Evol 7:198–202CrossRefPubMedGoogle Scholar
  47. Minoarivelo HO et al (2014) Detecting phylogenetic signal in mutualistic interaction networks using a Markov process model. Oikos 123:1250–1260PubMedCentralCrossRefPubMedGoogle Scholar
  48. Mowles SL, Rundle SD, Cotton PA (2011) Susceptibility to predation affects trait-mediated indirect interactions by reversing interspecific competition. PLoS ONE 6:e23068PubMedCentralCrossRefPubMedGoogle Scholar
  49. Nakazawa M (2014) fmsb: Functions for medical statistics book with some demographic data. R Package Version 0.5.1. http://CRAN.R-project.org/package=fmsb (Accessed April 2015)
  50. Nuismer SL, Gomeulkiewiez R, Ridenhour BJ (2010) When is correlation coevolution? Am Nat 175:525–537CrossRefPubMedGoogle Scholar
  51. Nuismer SL, Jordano P, Bascompte J (2012) Coevolution and the architecture of mutualistic networks. Evolution 67:338–354CrossRefPubMedGoogle Scholar
  52. Nuwagaba S, Zhang F, Hui C (2015) A hybrid behavioural rule of adaptation and drift explains the emergent architecture of antagonistic networks. Proc R Soc B Biol Sci 282:20150320CrossRefGoogle Scholar
  53. Olesen JM, Jordano P (2002) Geographic patterns in plant–pollinator mutualistic networks. Ecology 89:2416–2424Google Scholar
  54. Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci USA 104:19891–19896PubMedCentralCrossRefPubMedGoogle Scholar
  55. Peacor SD, Werner EE (1997) Trait mediated indirect interactions in a simple aquatic food web. Ecology 78:1146–1156CrossRefGoogle Scholar
  56. Rafferty NE, Ives AR (2013) Phylogenetic trait-based analysis of ecological networks. Ecology 94:2321–2333PubMedCentralCrossRefPubMedGoogle Scholar
  57. Railsback FS, Lamberson RH, Harvey BC, Duff WE (1999) Movement rules for individual-based models of stream fish. Ecol Model 123:73–89CrossRefGoogle Scholar
  58. Raimumdo LG, Gilbert GP, Hembry DH, Guimarães PR Jr (2014) Conflicting selection in the course of adaptive diversification: the interplay between mutualism and intraspecific competition. Am Nat 183:363–375CrossRefGoogle Scholar
  59. Rezende EL et al (2007) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–928CrossRefPubMedGoogle Scholar
  60. Santamaría L, Rodríguez-Gironés MA (2007) Linkage rules for plant–pollinator networks: trait complementarity or exploitation barriers? PLoS Biol 5:354–362CrossRefGoogle Scholar
  61. Schelling M, Hui C (2015) modMax: Community structure detection via modularity maximization. R Package Version 1.0. http://CRAN.R-project.org/package=modMax (Accessed April 2015)
  62. Schleuning M et al (2014) Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecol Lett 17:454–463CrossRefPubMedGoogle Scholar
  63. Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascade: the primacy of trait-mediated indirect interactions. Ecol Lett 7:153–163CrossRefGoogle Scholar
  64. Snow BK, Snow DW (1972) Feeding niches of hummingbirds in a Trinidad valley. J Anim Ecol 41:471–485CrossRefGoogle Scholar
  65. Stang M, Klinkhamer PG, van der Meijden E (2006) Size constraints and flower abundance determine the number of interactions in a plant-flower visitor web. Oikos 112:111–121CrossRefGoogle Scholar
  66. Stang M, Klinkhamer PG, van der Meijden E (2007) Asymmetric specialization and extinction risk in plant-flower visitor webs: a matter of morphology or abundance? Oecologia 151:442–453CrossRefPubMedGoogle Scholar
  67. Stang M, Klinkhamer PG, Waser NM, Stang I, van der Meijden E (2009) Size specific interaction patterns and size matching in a plant–pollinator interaction web. Ann Bot 103:1459–1469PubMedCentralCrossRefPubMedGoogle Scholar
  68. Stouffer DB, Cirtwill AR, Bascompte J (2014) How exotic plants integrate into pollination networks. J Ecol 102:1442–1450PubMedCentralCrossRefPubMedGoogle Scholar
  69. Suweis S, Simini F, Banavar JR, Maritan A (2013) Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500:449–452CrossRefPubMedGoogle Scholar
  70. Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856CrossRefPubMedGoogle Scholar
  71. Thompson AR, Adam TC, Hultgren KM, Thacker ET (2013) Ecology and evolution affect network structure in an intimate marine mutualism. Am Nat 182:58–72CrossRefGoogle Scholar
  72. Tylianakis JM, Tscharntke T, Lewis OT (2007) Habitat modification alters the structure of tropical host-parasitoid food webs. Nature 445:202–205CrossRefPubMedGoogle Scholar
  73. Vázquez DP (2005) Degree distribution in plant–animal mutualistic networks: forbidden links or random interactions? Oikos 108:421–426CrossRefGoogle Scholar
  74. Vazquèz DP, Aizen MA (2004) Asymmetric specialization: a pervasive feature of plant–pollinator interactions. Ecology 85:1251–1257CrossRefGoogle Scholar
  75. Vázquez DP et al (2007) Species abundance and symmetric interaction strength in ecological networks. Oikos 116:1120–1127CrossRefGoogle Scholar
  76. Welti EAR, Joern A (2015) Structure of trophic and mutualistic networks across broad environmental gradients. Ecol Evol 5:326–334PubMedCentralCrossRefPubMedGoogle Scholar
  77. Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100CrossRefGoogle Scholar
  78. Wissinger S, McGrady J (1993) Intraguild predation and competition between larval dragonflies: direct and indirect effects of shared prey. Ecology 74:207–218CrossRefGoogle Scholar
  79. Zhang F, Hui C (2014) Recent experience-driven behavior optimizes foraging. Anim Behav 88:13–19CrossRefGoogle Scholar
  80. Zhang F, Hui C, Terblanche JS (2011) An interaction switch predicts the nested architecture of mutualistic networks. Ecol Lett 14:797–803CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Mathematical Sciences, Centre for Invasion BiologyStellenbosch UniversityMatielandSouth Africa
  2. 2.Mathematical and Physical BiosciencesAfrican Institute for Mathematical SciencesCape TownSouth Africa

Personalised recommendations