Evolutionary Ecology

, Volume 29, Issue 6, pp 851–871 | Cite as

Habitat matching and spatial heterogeneity of phenotypes: implications for metapopulation and metacommunity functioning

  • Staffan Jacob
  • Elvire Bestion
  • Delphine Legrand
  • Jean Clobert
  • Julien Cote
Original Paper


Spatial heterogeneity in the distribution of phenotypes among populations is of major importance for species evolution and ecosystem functioning. Dispersal has long been assumed to homogenise populations in structured landscapes by generating maladapted gene flows, making spatial heterogeneity of phenotypes traditionally considered resulting from local adaptation or plasticity. However, there is accumulating evidence that individuals, instead of dispersing randomly in the landscapes, adjust their dispersal decisions according to their phenotype and the environmental conditions. Specifically, individuals might move in the landscape to find and settle in the environmental conditions that best match their phenotype, therefore maximizing their fitness, a hypothesis named habitat matching. Although habitat matching and associated non-random gene flows can produce spatial phenotypic heterogeneity, their potential consequences for metapopulation and metacommunity functioning are still poorly understood. Here, we discuss evidence for intra and interspecific drivers of habitat matching, and highlight the potential consequences of this process for metapopulation and metacommunity functioning. We conclude that habitat matching might deeply affect the eco-evolutionary dynamics of meta-systems, pointing out the need for further empirical and theoretical research on its incidence and implications for species and communities evolution under environmental changes.


Gene flow Dispersal decision Intraspecific variability Habitat matching Environmental conditions Interspecific interactions 



This work was supported by the ANR INDHET to SJ and JCl, FNRS-F.S.R. and Catholic University of Louvain to DL, ANR-12-JSV7-0004-01 to JCo and a Ph.D. scholarship from MESR (Ministère de l’Enseignement Supérieur et de la Recherche) to EB. JCo was supported by an ANR-12-JSV7-0004-01 and by the ERA-Net BiodivERsA, with the national funder ONEMA, part of the 2012–2013 BiodivERsA call for research proposals. This work is part of the ‘Laboratoire d’Excellence (LABEX)’ entitled TULIP (ANR-10-LABX-41), and the National Infrastructure AnaEE-France.


Context-dependent dispersal

Correlations between dispersal behaviour at each stage and ecological conditions. These conditions include abiotic conditions (e.g. temperature, humidity, soil composition), population/social contexts (e.g. density, relatedness, sex-ratio) and interspecific interactions/community composition (e.g. predation risk, parasitism, prey abundance).

Dispersal syndrome

A suite of morphological, behavioural, physiological and life-history traits characterizing dispersers in comparison to residents. These suites result from the interaction between phenotype- and context-dependencies of dispersal and can thus vary with ecological contexts of dispersal.

Habitat matching

Dispersal decisions consisting in moving through the landscape in order to find and settle in the environmental context that best match their phenotype, providing individuals with higher performances than in other habitats. This process results in a match between individual phenotype and habitat ecological conditions. Habitat matching therefore consists in phenotype- and context-dependent dispersal decisions at emigration and/or immigration.

Local adaptation

Increase of individual’s performance driven by genetic adaptation to the local ecological context over generations.

Phenotype-dependent dispersal

Correlations between dispersal behaviour at each stage and individual morphological, behavioural, physiological and life-history traits. These correlations can be genetically determined or can vary with ecological conditions, including conditions involved in context-dependent dispersal.

Phenotypic plasticity

Ability of a given genotype to produce different alternative phenotypes according to the environmental conditions.


A group of communities that are spatially separated and connected by the dispersal of one or several species. Metacommunity dynamics result from complex interactions between extinctions and re-colonizations for each species constituting communities.


A group of populations that are spatially separated and connected by dispersal. Metapopulation dynamics result from extinctions and re-colonization events. Metapopulations often result from landscape fragmentation where habitat patches are being surrounded by unsuitable matrix and become more isolated from each other.

Random and non-random dispersal

Random dispersal is active or passive movement from a natal/breeding site to another breeding site regardless of their ecological characteristics and phenotypic attributes of candidate dispersers. Non-random dispersal occurs when dispersal behaviour, at least for one stage (departure, transience, settlement), depends on sites’ ecological condition (context-dependent dispersal) or on individual phenotype (phenotype-dependent dispersal).

Spatial heterogeneity

Spatial structure in the distribution of ecological conditions (i.e. spatial environmental heterogeneity) or of phenotypic traits (i.e. spatial phenotypic heterogeneity) in a landscape.


  1. Agrawal A (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326. doi: 10.1126/science.1060701 PubMedGoogle Scholar
  2. Allen MR, Thum RA, Vandyke JN, Cáceres CE (2012) Trait sorting in Daphnia colonising man-made lakes. Freshw Biol 57:1813–1822. doi: 10.1111/j.1365-2427.2012.02840.x Google Scholar
  3. Altermatt F, Hottinger J, Ebert D (2007) Parasites promote host gene flow in a metapopulation. Evol Ecol 21:561–575. doi: 10.1007/s10682-006-9136-6 Google Scholar
  4. Altermatt F, Schreiber S, Holyoak M (2011) Interactive effects of disturbance and dispersal directionality on species richness and composition in metacommunities. Ecology 92:859–870PubMedGoogle Scholar
  5. Altermatt F, Fronhofer E, Garnier A et al (2015) Big answers from small worlds: a user’s guide for protist microcosms as a model system in ecology and evolution. Methods Ecol Evol 6:218–231Google Scholar
  6. Amarasekare P (2004) The role of density-dependent dispersal in source–sink dynamics. J Theor Biol 226:159–168. doi: 10.1016/j.jtbi.2003.08.007 PubMedGoogle Scholar
  7. Baguette M, Clobert J, Schtickzelle N (2011) Metapopulation dynamics of the bog fritillary butterfly: experimental changes in habitat quality induced negative density-dependent dispersal. Ecography 34:170–176. doi: 10.1111/j.1600-0587.2010.06212.x Google Scholar
  8. Benard MF, McCauley SJ (2008) Integrating across life-history stages: consequences of natal habitat effects on dispersal. Am Nat 171:553–567. doi: 10.1086/587072 PubMedGoogle Scholar
  9. Bestion E, Teyssier A, Aubret F et al (2014) Maternal exposure to predator scents: offspring phenotypic adjustment and dispersal. Proc R Soc B Biol Sci 281:20140701Google Scholar
  10. Binckley CA, Resetarits WJ (2005) Habitat selection determines abundance, richness and species composition of beetles in aquatic communities. Biol Lett 1:370–374. doi: 10.1098/rsbl.2005.0310 PubMedCentralPubMedGoogle Scholar
  11. Bolnick DI, Nosil P (2007) Natural selection in populations subjected to a migration load. Evolution 61:2229–2243PubMedGoogle Scholar
  12. Bolnick DI, Svanbäck R, Fordyce J et al (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28PubMedGoogle Scholar
  13. Bolnick DI, Amarasekare P, Araújo MS et al (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192. doi: 10.1016/j.tree.2011.01.009 PubMedCentralPubMedGoogle Scholar
  14. Bonte D, De Meester N, Matthysen E (2011) Selective integration advantages when transience is costly: immigration behaviour in an agrobiont spider. Anim Behav 81:837–841. doi: 10.1016/j.anbehav.2011.01.019 Google Scholar
  15. Bonte D, Van Dyck H, Bullock JM et al (2012) Costs of dispersal. Biol Rev 87:290–312. doi: 10.1111/j.1469-185X.2011.00201.x PubMedGoogle Scholar
  16. Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225PubMedGoogle Scholar
  17. Brodin T, Lind MI, Wiberg MK, Johansson F (2013) Personality trait differences between mainland and island populations in the common frog (Rana temporaria). Behav Ecol Sociobiol 67:135–143. doi: 10.1007/s00265-012-1433-1 Google Scholar
  18. Burgess SC, Marshall DJ (2011) Are numbers enough? Colonizer phenotype and abundance interact to affect population dynamics. J Anim Ecol 80:681–687. doi: 10.1111/j.1365-2656.2010.01802.x PubMedGoogle Scholar
  19. Chaine AS, Schtickzelle N, Polard T, Huet M, Clobert J (2010) Kin-based recognition and social aggregation in a ciliate. Evolution 64:1290–1300PubMedGoogle Scholar
  20. Chaput-Bardy A, Ducatez S, Legrand D, Baguette M (2014) Fitness costs of thermal reaction norms for wing melanisation in the large white butterfly (Pieris brassicae). PLoS One 9:e90026. doi: 10.1371/journal.pone.0090026 PubMedCentralPubMedGoogle Scholar
  21. Cheptou PO, Carrue O, Rouifed S, Cantarel A (2008) Rapid evolution of seed dispersal in an urban environment in the weed Crespi sancta. Proc Natl Acad Sci 105:3796–3799PubMedCentralPubMedGoogle Scholar
  22. Clobert J, Danchin E, Dhondt A, Nichols J (2001) Dispersal. Oxford University Press, New YorkGoogle Scholar
  23. Clobert J, Ims RA, Rousset F (2004) Causes, mechanisms and consequences of dispersal. In: Hanski I, Gagiotti OE (eds) Ecology, genetics and evolution of metapopulations. Elsevier Academic Press, London, pp 307–335Google Scholar
  24. Clobert J, Le Galliard J-F, Cote J et al (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209. doi: 10.1111/j.1461-0248.2008.01267.x PubMedGoogle Scholar
  25. Clobert J, Baguette M, Benton T, Bullock J (2012) Dispersal ecology and evolution. Oxford University Press, OxfordGoogle Scholar
  26. Cote J, Clobert J (2007a) Social personalities influence natal dispersal in a lizard. Proc R Soc B Biol Sci 274:383–390. doi: 10.1098/rspb.2006.3734 Google Scholar
  27. Cote J, Clobert J (2007b) Social information and emigration: lessons from immigrants. Ecol Lett 10:411–417. doi: 10.1111/j.1461-0248.2007.01032.x PubMedGoogle Scholar
  28. Cote J, Clobert J (2010) Risky dispersal: avoiding kin competition despite uncertainty. Ecology 91:1485–1493PubMedGoogle Scholar
  29. Cote J, Clobert J, Fitze PS (2007) Mother-offspring competition promotes colonization success. Proc Natl Acad Sci USA 104:9703–9708. doi: 10.1073/pnas.0703601104 PubMedCentralPubMedGoogle Scholar
  30. Cote J, Clobert J, Brodin T et al (2010) Personality-dependent dispersal: characterization, ontogeny and consequences for spatially structured populations. Philos Trans R Soc Lond B Biol Sci 365:4065–4076. doi: 10.1098/rstb.2010.0176 PubMedCentralPubMedGoogle Scholar
  31. Cote J, Fogarty S, Tymen B et al (2013) Personality-dependent dispersal cancelled under predation risk Personality-dependent dispersal cancelled under predation risk. Proc R Soc B Biol Sci 280:20132349Google Scholar
  32. Crespi BJ (2000) The evolution of maladaptation. Heredity 84:623–629PubMedGoogle Scholar
  33. Cucherousset J, Paillisson JM, Roussel JM (2013) Natal departure timing from spatially varying environments is dependent of individual ontogenetic status. Naturwissenschaften 100:761–768. doi: 10.1007/s00114-013-1073-y PubMedGoogle Scholar
  34. Dall SRX, Giraldeau L-A, Olsson O et al (2005) Information and its use by animals in evolutionary ecology. Trends Ecol Evol 20:187–193. doi: 10.1016/j.tree.2005.01.010 PubMedGoogle Scholar
  35. Danchin E, Giraldeau L-A, Valone TJ, Wagner RH (2004) Public information: from nosy neighbors to cultural evolution. Science 305:487–491. doi: 10.1126/science.1098254 PubMedGoogle Scholar
  36. Dardenne S, Ducatez S, Cote J, Poncin P, Stevens VM (2013) Neophobia and social tolerance are related to breeding group size in a semi-colonial bird. Behav Ecol Sociobiol 67:1317–1327Google Scholar
  37. Darwin C (1859) The origin of species by means of natural selection. John Murray, LondonGoogle Scholar
  38. DeWitt T, Scheiner S (2004) Phenotypic plasticity: functional and conceptual approachesGoogle Scholar
  39. DeWitt T, Sih A, Wilson D (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 5347:77–81Google Scholar
  40. Doligez B, Pärt T, Danchin E (2004) Availability and use of public information and conspecific density for settlement decisions in the collared flycatcher. J Anim Ecol 41:75–87Google Scholar
  41. Duckworth RA (2008) Adaptive dispersal strategies and the dynamics of a range expansion. Am Nat 172(Suppl):S4–S17. doi: 10.1086/588289 PubMedGoogle Scholar
  42. Duckworth RA, Badyaev AV (2007) Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proc Natl Acad Sci 104:15017–15022. doi: 10.1073/pnas.0706174104 PubMedCentralPubMedGoogle Scholar
  43. Duckworth RA, Kruuk LEB (2009) Evolution of genetic integration between dispersal and colonization ability in a bird. Evolution 63:968–977PubMedGoogle Scholar
  44. Dufty A, Clobert J, Anders P (2002) Hormones, developmental plasticity and adaptation. Trends Ecol Evol 17:190–196Google Scholar
  45. Ebenhard T (1990) A colonization strategy in field voles (Microtus Agrestis): reproductive traits and body size. Ecology 71:1833–1848Google Scholar
  46. Edelaar P, Bolnick DI (2012) Non-random gene flow: an underappreciated force in evolution and ecology. Trends Ecol Evol 27:659–665. doi: 10.1016/j.tree.2012.07.009 PubMedGoogle Scholar
  47. Edelaar P, Siepielski AM, Clobert J (2008) Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology. Evolution 62:2462–2472. doi: 10.1111/j.1558-5646.2008.00459.x PubMedGoogle Scholar
  48. Elliott EC, Cornell SJ (2012) Dispersal polymorphism and the speed of biological invasions. PLoS One 7:e40496. doi: 10.1371/journal.pone.0040496 PubMedCentralPubMedGoogle Scholar
  49. Ellsworth E, Belthoff J (1999) Effects of social status on the dispersal behaviour of juvenile western screech-owls. Anim Behav 57:883–892PubMedGoogle Scholar
  50. Estes J, Riedman M, Staedler M et al (2003) Individual variation in prey selection by sea otters: patterns, causes, and implications. J Anim Ecol 72:144–155Google Scholar
  51. Fellous S, Quillery E, Duncan AB, Kaltz O (2011) Parasitic infection reduces dispersal of ciliate host. Biol Lett 7:327–329. doi: 10.1098/rsbl.2010.0862 PubMedCentralPubMedGoogle Scholar
  52. Fellous S, Duncan A, Coulon A, Kaltz O (2012) Quorum sensing and density-dependent dispersal in an aquatic model system. PLoS One 7:e48436. doi: 10.1371/journal.pone.0048436 PubMedCentralPubMedGoogle Scholar
  53. Fernández-Chacón A, Genovart M, Pradel R et al (2013) When to stay, when to disperse and where to go: survival and dispersal patterns in a spatially structured seabird population. Ecography 36:1117–1126. doi: 10.1111/j.1600-0587.2013.00246.x Google Scholar
  54. Fogarty S, Cote J, Sih A (2011) Social personality polymorphism and the spread of invasive species: a model. Am Nat 177:273–287. doi: 10.1086/658174 PubMedGoogle Scholar
  55. Forsman A, Merilä J, Ebenhard T (2011) Phenotypic evolution of dispersal-enhancing traits in insular voles. Proc R Soc B Biol Sci 278:225–232. doi: 10.1098/rspb.2010.1325 Google Scholar
  56. Fronhofer EA, Sperr EB, Kreis A et al (2013) Picky hitch-hikers: vector choice leads to directed dispersal and fat-tailed kernels in a passively dispersing mite. Oikos 122:1254–1264. doi: 10.1111/j.1600-0706.2013.00503.x Google Scholar
  57. Gandon S, Michalakis Y (1999) Evolutionarily stable dispersal rate in a metapopulation with extinctions and kin competition. J Theor Biol 199:275–290. doi: 10.1006/jtbi.1999.0960 PubMedGoogle Scholar
  58. Gilliam J, Fraser D (2001) Movement in corridors: enhancement by predation threat, disturbance, and habitat structure. Ecology 82:258–273Google Scholar
  59. Gloria-Soria A, Azevedo RBR (2008) npr-1 regulates foraging and dispersal strategies in Caenorhabditis elegans. Curr Biol 18:1694–1699. doi: 10.1016/j.cub.2008.09.043 PubMedGoogle Scholar
  60. Goodacre SL, Martin OY, Bonte D et al (2009) Microbial modification of host long-distance dispersal capacity. BMC Biol 7:32. doi: 10.1186/1741-7007-7-32 PubMedCentralPubMedGoogle Scholar
  61. Haag CR, Saastamoinen M, Marden JH, Hanski I (2005) A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proc R Soc B Biol Sci 272:2449–2456. doi: 10.1098/rspb.2005.3235 Google Scholar
  62. Hanski I (1999) Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87:209–219Google Scholar
  63. Hanski I, Gaggiotti O (2004) Ecology, genetics, and evolution of metapopulations. Elsevier, AmsterdamGoogle Scholar
  64. Hauzy C, Hulot FD, Gins A, Loreau M (2007) Intra- and interspecific density-dependent dispersal in an aquatic prey-predator system. J Anim Ecol 76:552–558. doi: 10.1111/j.1365-2656.2007.01227.x PubMedGoogle Scholar
  65. Heidinger IMM, Hein S, Bonte D (2010) Patch connectivity and sand dynamics affect dispersal-related morphology of the blue-winged grasshopper Oedipoda caerulescens in coastal grey dunes. Insect Conserv Divers 3:205–212. doi: 10.1111/j.1752-4598.2010.00089.x Google Scholar
  66. Heino J (2013) Environmental heterogeneity, dispersal mode, and co-occurrence in stream macroinvertebrates. Ecol Evol 3:344–355. doi: 10.1002/ece3.470 PubMedCentralPubMedGoogle Scholar
  67. Heinz SK, Strand E (2006) Adaptive patch searching strategies in fragmented landscapes. Evol Ecol 20:113–130. doi: 10.1007/s10682-005-5378-y Google Scholar
  68. Howeth JG, Weis JJ, Brodersen J et al (2013) Intraspecific phenotypic variation in a fish predator affects multitrophic lake metacommunity structure. Ecol Evol 3:5031–5044. doi: 10.1002/ece3.878 PubMedCentralPubMedGoogle Scholar
  69. Jacob S, Chaine AS, Schtickzelle N, Huet M, Clobert J (in press) Social information from immigrants: multiple immigrant-based sources of information for dispersal decisions in a ciliate. J Anim Ecol. doi: 10.1111/1365-2656.12380
  70. Johst K, Brandl R, Eber S (2002) Metapopulation persistence in dynamic landscapes: the role of dispersal distance. Oikos 98:263–270Google Scholar
  71. Juette T, Cucherousset J, Cote J (2014) Animal personality and the ecological impacts of freshwater non-native species. Curr Zool 60:417–427Google Scholar
  72. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. doi: 10.1111/j.1461-0248.2004.00684.x Google Scholar
  73. Kim SY, Torres R, Drummond H (2009) Simultaneous positive and negative density-dependent dispersal in a colonial bird species. Ecology 90:230–239PubMedGoogle Scholar
  74. Laine AL, Burdon JJ, Dodds PN, Thrall PH (2011) Spatial variation in disease resistance: from molecules to metapopulations. J Ecol 99:96–112. doi: 10.1111/j.1365-2745.2010.01738.x PubMedCentralPubMedGoogle Scholar
  75. Lambin X, Aars J, Piertney S (2001) Dispersal, intraspecific competition, kin competition and kin facilitation: a review of the empirical evidence. In: Clobert J, Danchin E, Dhondt A, Nichols J (eds) Dispersal. Oxford University Press, OxfordGoogle Scholar
  76. Le Galliard J, Ferrière R, Clobert J (2005) Effect of patch occupancy on immigration in the common lizard. J Anim Ecol 74:241–249. doi: 10.1111/j.1365-2656.2004.00912.x Google Scholar
  77. Le Galliard J-F, Rémy A, Ims RA, Lambin X (2012) Patterns and processes of dispersal behaviour in arvicoline rodents. Mol Ecol 21:505–523. doi: 10.1111/j.1365-294X.2011.05410.x PubMedGoogle Scholar
  78. Legrand D, Guillaume O, Baguette M et al (2012) The Metatron: an experimental system to study dispersal and metaecosystems for terrestrial organisms. Nat Methods 9:828–833PubMedGoogle Scholar
  79. Legrand D, Trochet A, Moulherat S et al (in press) Ranking the ecological causes of dispersal in a butterfly. EcographyGoogle Scholar
  80. Leibold MA, Holyoak M, Mouquet N et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. doi: 10.1111/j.1461-0248.2004.00608.x Google Scholar
  81. Leimar O, Norberg U (1997) Metapopulation extinction and genetic variation in dispersal-related traits. Oikos 80:448–458Google Scholar
  82. Loehle C (2012) A conditional choice model of habitat selection explains the source–sink paradox. Ecol Model 235–236:59–66. doi: 10.1016/j.ecolmodel.2012.03.037 Google Scholar
  83. Logue JB, Mouquet N, Peter H, Hillebrand H (2011) Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol Evol 26:482–491. doi: 10.1016/j.tree.2011.04.009 PubMedGoogle Scholar
  84. Lowe WH, McPeek MA (2014) Is dispersal neutral? Trends Ecol Evol 29:444–450. doi: 10.1016/j.tree.2014.05.009 PubMedGoogle Scholar
  85. Martín González AM, Dalsgaard B, Olesen JM (2010) Centrality measures and the importance of generalist species in pollination networks. Ecol Complex 7:36–43. doi: 10.1016/j.ecocom.2009.03.008 Google Scholar
  86. Michel MJ (2011) Spatial dependence of phenotype-environment associations for tadpoles in natural ponds. Evol Ecol 25:915–932. doi: 10.1007/s10682-010-9441-y Google Scholar
  87. O’Riain M, Jarvis J, Faulkes C (1996) A dispersive morph in the naked mole-rat. Nature 380:619–621PubMedGoogle Scholar
  88. Pennekamp F, Mitchell KA, Chaine A, Schtickzelle N (2014) Dispersal propensity in tetrahymena thermophila ciliates-a reaction norm perspective. Evolution 68:2319–2330. doi: 10.1111/evo.12428 PubMedGoogle Scholar
  89. Poethke H, Pfenning B, Hovestadt T (2007) The relative contribution of individual and kin selection to the evolution of density-dependent dispersal rates. Evol Ecol Res 9:41–50Google Scholar
  90. Post D, Palkovacs E, Schielke E, Dodson S (2008) Intraspecific variation in a predator affects community structure and cascading trophic interactions. Ecology 89:2019–2032PubMedGoogle Scholar
  91. Pruitt JN, Cote J, Ferrari MCO (2012) Behavioural trait variants in a habitat-forming species dictate the nature of its interactions with and among heterospecifics. Funct Ecol 26:29–36. doi: 10.1111/j.1365-2435.2011.01922.x Google Scholar
  92. Reiss J, Bridle JR, Montoya JM, Woodward G (2009) Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol Evol 24:505–514PubMedGoogle Scholar
  93. Rémy A, Le Galliard J-F, Gundersen G et al (2011) Effects of individual condition and habitat quality on natal dispersal behaviour in a small rodent. J Anim Ecol 80:929–937. doi: 10.1111/j.1365-2656.2011.01849.x PubMedGoogle Scholar
  94. Resetarits W, Binckley C (2009) Spatial contagion of predation risk affects colonization dynamics in experimental aquatic landscapes. Ecology 90:869–876PubMedGoogle Scholar
  95. Ridley M (2004) Natural selection and variation. Evolution, 3rd edn. Blackwell, New York, pp 71–92Google Scholar
  96. Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253Google Scholar
  97. Ronce O, Clobert J (2012) Dispersal syndromes. In: Clobert J, Baguette M, Benton T, Bullock J (eds) Dispersal ecology and evolution. Oxford University Press, Oxford, pp 119–138Google Scholar
  98. Selonen V, Hanski IK (2010) Decision making in dispersing Siberian flying squirrels. Behav Ecol 21:219–225. doi: 10.1093/beheco/arp179 Google Scholar
  99. Selonen V, Hanski I (2012) Dispersing Siberian flying squirrels (Pteromys volans) locate preferred habitats in fragmented landscapes. Can J Zool 90:885–892Google Scholar
  100. Shine R, Brown GP, Phillips BL (2011) An evolutionary process that assemble phenotypes through space rather than through time. Proc Natl Acad Sci USA 108:5708–5711PubMedCentralPubMedGoogle Scholar
  101. Sih A, Bolnick DI, Luttbeg B et al (2010) Predator-prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119:610–621. doi: 10.1111/j.1600-0706.2009.18039.x Google Scholar
  102. Sih A, Cote J, Evans M et al (2012) Ecological implications of behavioural syndromes. Ecol Lett 15:278–289. doi: 10.1111/j.1461-0248.2011.01731.x PubMedGoogle Scholar
  103. Sloggett JJ, Weisser WW (2002) Parasitoids induce production of the dispersal morph of the pea aphid, acyrthosiphon pisum. Oikos 98:323–333Google Scholar
  104. Stamps J (2001) Habitat selection by dispersers: integrating proximate and ultimate approaches. In: Clobert J, Baguette M, Benton T, Bullock J (eds) Dispersal. Oxford University Press, Oxford, pp 230–242Google Scholar
  105. Stevens VM, Trochet A, Blanchet S et al (2013) Dispersal syndromes and the use of life-histories to predict dispersal. Evol Appl 6:630–642. doi: 10.1111/eva.12049 PubMedCentralPubMedGoogle Scholar
  106. Stevens VM, Whitmee S, Le Galliard J-F et al (2014) A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol Lett 17:1039–1052. doi: 10.1111/ele.12303 PubMedGoogle Scholar
  107. Trochet A, Legrand D, Larranaga N et al (2013) Population sex ratio and dispersal in experimental, two-patch metapopulations of butterflies. J Anim Ecol 82(5):946–955PubMedGoogle Scholar
  108. Urban MC, Leibold MA, Amarasekare P et al (2008) The evolutionary ecology of metacommunities. Trends Ecol Evol 23:311–317. doi: 10.1016/j.tree.2008.02.007 PubMedGoogle Scholar
  109. Van Allen BG, Bhavsar P (2014) Natal habitat drive density-dependent scaling of dispersal decisions. Oikos 123:699–704Google Scholar
  110. Violle C, Enquist BJ, McGill BJ et al (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252. doi: 10.1016/j.tree.2011.11.014 PubMedGoogle Scholar
  111. Vuilleumier S, Possingham HP (2006) Does colonization asymmetry matter in metapopulations? Proc R Soc B Biol Sci 273:1637–1642. doi: 10.1098/rspb.2006.3469 Google Scholar
  112. Wade M, McCauley D (1988) Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42:995–1005Google Scholar
  113. West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20:249–278Google Scholar
  114. West-Eberhard M (2003) Developmental plasticity and evolution. Oxford University Press, New YorkGoogle Scholar
  115. Wolf M, Weissing FJ (2012) Animal personalities: consequences for ecology and evolution. Trends Ecol Evol 27:452–461. doi: 10.1016/j.tree.2012.05.001 PubMedGoogle Scholar
  116. Wooster D, Sih A (1995) A review of the drift and activity responses of stream prey to predator presence. Oikos 73:3–8Google Scholar
  117. Zera AJ, Brisson JA (2012) Quantitative, physiological, and molecular genetics of dispersal/migration. In: Clobert J, Baguette M, Benton T, Bullock J (eds) Dispersal: causes and consequences. Oxford University Press, OxfordGoogle Scholar
  118. Zera AJ, Denno RF (1997) Physiology and ecology of dispersal polymorphism in insects. Ann Rev Entomol 42:207–230Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Staffan Jacob
    • 1
  • Elvire Bestion
    • 1
  • Delphine Legrand
    • 2
  • Jean Clobert
    • 1
  • Julien Cote
    • 3
  1. 1.Station d’Ecologie Expérimentale du CNRS à MoulisUSR CNRS 2936MoulisFrance
  2. 2.Biodiversity Research Centre, Earth and Life InstituteUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Laboratoire Evolution and Diversité Biologique, UMR 5174Université Paul Sabatier Toulouse IIIToulouseFrance

Personalised recommendations