Skip to main content
Log in

Habitat matching and spatial heterogeneity of phenotypes: implications for metapopulation and metacommunity functioning

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Spatial heterogeneity in the distribution of phenotypes among populations is of major importance for species evolution and ecosystem functioning. Dispersal has long been assumed to homogenise populations in structured landscapes by generating maladapted gene flows, making spatial heterogeneity of phenotypes traditionally considered resulting from local adaptation or plasticity. However, there is accumulating evidence that individuals, instead of dispersing randomly in the landscapes, adjust their dispersal decisions according to their phenotype and the environmental conditions. Specifically, individuals might move in the landscape to find and settle in the environmental conditions that best match their phenotype, therefore maximizing their fitness, a hypothesis named habitat matching. Although habitat matching and associated non-random gene flows can produce spatial phenotypic heterogeneity, their potential consequences for metapopulation and metacommunity functioning are still poorly understood. Here, we discuss evidence for intra and interspecific drivers of habitat matching, and highlight the potential consequences of this process for metapopulation and metacommunity functioning. We conclude that habitat matching might deeply affect the eco-evolutionary dynamics of meta-systems, pointing out the need for further empirical and theoretical research on its incidence and implications for species and communities evolution under environmental changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal A (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326. doi:10.1126/science.1060701

    CAS  PubMed  Google Scholar 

  • Allen MR, Thum RA, Vandyke JN, Cáceres CE (2012) Trait sorting in Daphnia colonising man-made lakes. Freshw Biol 57:1813–1822. doi:10.1111/j.1365-2427.2012.02840.x

    Google Scholar 

  • Altermatt F, Hottinger J, Ebert D (2007) Parasites promote host gene flow in a metapopulation. Evol Ecol 21:561–575. doi:10.1007/s10682-006-9136-6

    Google Scholar 

  • Altermatt F, Schreiber S, Holyoak M (2011) Interactive effects of disturbance and dispersal directionality on species richness and composition in metacommunities. Ecology 92:859–870

    PubMed  Google Scholar 

  • Altermatt F, Fronhofer E, Garnier A et al (2015) Big answers from small worlds: a user’s guide for protist microcosms as a model system in ecology and evolution. Methods Ecol Evol 6:218–231

    Google Scholar 

  • Amarasekare P (2004) The role of density-dependent dispersal in source–sink dynamics. J Theor Biol 226:159–168. doi:10.1016/j.jtbi.2003.08.007

    PubMed  Google Scholar 

  • Baguette M, Clobert J, Schtickzelle N (2011) Metapopulation dynamics of the bog fritillary butterfly: experimental changes in habitat quality induced negative density-dependent dispersal. Ecography 34:170–176. doi:10.1111/j.1600-0587.2010.06212.x

    Google Scholar 

  • Benard MF, McCauley SJ (2008) Integrating across life-history stages: consequences of natal habitat effects on dispersal. Am Nat 171:553–567. doi:10.1086/587072

    PubMed  Google Scholar 

  • Bestion E, Teyssier A, Aubret F et al (2014) Maternal exposure to predator scents: offspring phenotypic adjustment and dispersal. Proc R Soc B Biol Sci 281:20140701

    Google Scholar 

  • Binckley CA, Resetarits WJ (2005) Habitat selection determines abundance, richness and species composition of beetles in aquatic communities. Biol Lett 1:370–374. doi:10.1098/rsbl.2005.0310

    PubMed Central  PubMed  Google Scholar 

  • Bolnick DI, Nosil P (2007) Natural selection in populations subjected to a migration load. Evolution 61:2229–2243

    PubMed  Google Scholar 

  • Bolnick DI, Svanbäck R, Fordyce J et al (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28

    PubMed  Google Scholar 

  • Bolnick DI, Amarasekare P, Araújo MS et al (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26:183–192. doi:10.1016/j.tree.2011.01.009

    PubMed Central  PubMed  Google Scholar 

  • Bonte D, De Meester N, Matthysen E (2011) Selective integration advantages when transience is costly: immigration behaviour in an agrobiont spider. Anim Behav 81:837–841. doi:10.1016/j.anbehav.2011.01.019

    Google Scholar 

  • Bonte D, Van Dyck H, Bullock JM et al (2012) Costs of dispersal. Biol Rev 87:290–312. doi:10.1111/j.1469-185X.2011.00201.x

    PubMed  Google Scholar 

  • Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225

    PubMed  Google Scholar 

  • Brodin T, Lind MI, Wiberg MK, Johansson F (2013) Personality trait differences between mainland and island populations in the common frog (Rana temporaria). Behav Ecol Sociobiol 67:135–143. doi:10.1007/s00265-012-1433-1

    Google Scholar 

  • Burgess SC, Marshall DJ (2011) Are numbers enough? Colonizer phenotype and abundance interact to affect population dynamics. J Anim Ecol 80:681–687. doi:10.1111/j.1365-2656.2010.01802.x

    PubMed  Google Scholar 

  • Chaine AS, Schtickzelle N, Polard T, Huet M, Clobert J (2010) Kin-based recognition and social aggregation in a ciliate. Evolution 64:1290–1300

    PubMed  Google Scholar 

  • Chaput-Bardy A, Ducatez S, Legrand D, Baguette M (2014) Fitness costs of thermal reaction norms for wing melanisation in the large white butterfly (Pieris brassicae). PLoS One 9:e90026. doi:10.1371/journal.pone.0090026

    PubMed Central  PubMed  Google Scholar 

  • Cheptou PO, Carrue O, Rouifed S, Cantarel A (2008) Rapid evolution of seed dispersal in an urban environment in the weed Crespi sancta. Proc Natl Acad Sci 105:3796–3799

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clobert J, Danchin E, Dhondt A, Nichols J (2001) Dispersal. Oxford University Press, New York

    Google Scholar 

  • Clobert J, Ims RA, Rousset F (2004) Causes, mechanisms and consequences of dispersal. In: Hanski I, Gagiotti OE (eds) Ecology, genetics and evolution of metapopulations. Elsevier Academic Press, London, pp 307–335

  • Clobert J, Le Galliard J-F, Cote J et al (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209. doi:10.1111/j.1461-0248.2008.01267.x

    PubMed  Google Scholar 

  • Clobert J, Baguette M, Benton T, Bullock J (2012) Dispersal ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Cote J, Clobert J (2007a) Social personalities influence natal dispersal in a lizard. Proc R Soc B Biol Sci 274:383–390. doi:10.1098/rspb.2006.3734

    CAS  Google Scholar 

  • Cote J, Clobert J (2007b) Social information and emigration: lessons from immigrants. Ecol Lett 10:411–417. doi:10.1111/j.1461-0248.2007.01032.x

    CAS  PubMed  Google Scholar 

  • Cote J, Clobert J (2010) Risky dispersal: avoiding kin competition despite uncertainty. Ecology 91:1485–1493

    CAS  PubMed  Google Scholar 

  • Cote J, Clobert J, Fitze PS (2007) Mother-offspring competition promotes colonization success. Proc Natl Acad Sci USA 104:9703–9708. doi:10.1073/pnas.0703601104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cote J, Clobert J, Brodin T et al (2010) Personality-dependent dispersal: characterization, ontogeny and consequences for spatially structured populations. Philos Trans R Soc Lond B Biol Sci 365:4065–4076. doi:10.1098/rstb.2010.0176

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cote J, Fogarty S, Tymen B et al (2013) Personality-dependent dispersal cancelled under predation risk Personality-dependent dispersal cancelled under predation risk. Proc R Soc B Biol Sci 280:20132349

    Google Scholar 

  • Crespi BJ (2000) The evolution of maladaptation. Heredity 84:623–629

    PubMed  Google Scholar 

  • Cucherousset J, Paillisson JM, Roussel JM (2013) Natal departure timing from spatially varying environments is dependent of individual ontogenetic status. Naturwissenschaften 100:761–768. doi:10.1007/s00114-013-1073-y

    CAS  PubMed  Google Scholar 

  • Dall SRX, Giraldeau L-A, Olsson O et al (2005) Information and its use by animals in evolutionary ecology. Trends Ecol Evol 20:187–193. doi:10.1016/j.tree.2005.01.010

    PubMed  Google Scholar 

  • Danchin E, Giraldeau L-A, Valone TJ, Wagner RH (2004) Public information: from nosy neighbors to cultural evolution. Science 305:487–491. doi:10.1126/science.1098254

    CAS  PubMed  Google Scholar 

  • Dardenne S, Ducatez S, Cote J, Poncin P, Stevens VM (2013) Neophobia and social tolerance are related to breeding group size in a semi-colonial bird. Behav Ecol Sociobiol 67:1317–1327

    Google Scholar 

  • Darwin C (1859) The origin of species by means of natural selection. John Murray, London

    Google Scholar 

  • DeWitt T, Scheiner S (2004) Phenotypic plasticity: functional and conceptual approaches

  • DeWitt T, Sih A, Wilson D (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 5347:77–81

    Google Scholar 

  • Doligez B, Pärt T, Danchin E (2004) Availability and use of public information and conspecific density for settlement decisions in the collared flycatcher. J Anim Ecol 41:75–87

    Google Scholar 

  • Duckworth RA (2008) Adaptive dispersal strategies and the dynamics of a range expansion. Am Nat 172(Suppl):S4–S17. doi:10.1086/588289

    PubMed  Google Scholar 

  • Duckworth RA, Badyaev AV (2007) Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proc Natl Acad Sci 104:15017–15022. doi:10.1073/pnas.0706174104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duckworth RA, Kruuk LEB (2009) Evolution of genetic integration between dispersal and colonization ability in a bird. Evolution 63:968–977

    PubMed  Google Scholar 

  • Dufty A, Clobert J, Anders P (2002) Hormones, developmental plasticity and adaptation. Trends Ecol Evol 17:190–196

    Google Scholar 

  • Ebenhard T (1990) A colonization strategy in field voles (Microtus Agrestis): reproductive traits and body size. Ecology 71:1833–1848

    Google Scholar 

  • Edelaar P, Bolnick DI (2012) Non-random gene flow: an underappreciated force in evolution and ecology. Trends Ecol Evol 27:659–665. doi:10.1016/j.tree.2012.07.009

    PubMed  Google Scholar 

  • Edelaar P, Siepielski AM, Clobert J (2008) Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology. Evolution 62:2462–2472. doi:10.1111/j.1558-5646.2008.00459.x

    PubMed  Google Scholar 

  • Elliott EC, Cornell SJ (2012) Dispersal polymorphism and the speed of biological invasions. PLoS One 7:e40496. doi:10.1371/journal.pone.0040496

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ellsworth E, Belthoff J (1999) Effects of social status on the dispersal behaviour of juvenile western screech-owls. Anim Behav 57:883–892

    PubMed  Google Scholar 

  • Estes J, Riedman M, Staedler M et al (2003) Individual variation in prey selection by sea otters: patterns, causes, and implications. J Anim Ecol 72:144–155

    Google Scholar 

  • Fellous S, Quillery E, Duncan AB, Kaltz O (2011) Parasitic infection reduces dispersal of ciliate host. Biol Lett 7:327–329. doi:10.1098/rsbl.2010.0862

    PubMed Central  PubMed  Google Scholar 

  • Fellous S, Duncan A, Coulon A, Kaltz O (2012) Quorum sensing and density-dependent dispersal in an aquatic model system. PLoS One 7:e48436. doi:10.1371/journal.pone.0048436

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fernández-Chacón A, Genovart M, Pradel R et al (2013) When to stay, when to disperse and where to go: survival and dispersal patterns in a spatially structured seabird population. Ecography 36:1117–1126. doi:10.1111/j.1600-0587.2013.00246.x

    Google Scholar 

  • Fogarty S, Cote J, Sih A (2011) Social personality polymorphism and the spread of invasive species: a model. Am Nat 177:273–287. doi:10.1086/658174

    PubMed  Google Scholar 

  • Forsman A, Merilä J, Ebenhard T (2011) Phenotypic evolution of dispersal-enhancing traits in insular voles. Proc R Soc B Biol Sci 278:225–232. doi:10.1098/rspb.2010.1325

    Google Scholar 

  • Fronhofer EA, Sperr EB, Kreis A et al (2013) Picky hitch-hikers: vector choice leads to directed dispersal and fat-tailed kernels in a passively dispersing mite. Oikos 122:1254–1264. doi:10.1111/j.1600-0706.2013.00503.x

    Google Scholar 

  • Gandon S, Michalakis Y (1999) Evolutionarily stable dispersal rate in a metapopulation with extinctions and kin competition. J Theor Biol 199:275–290. doi:10.1006/jtbi.1999.0960

    PubMed  Google Scholar 

  • Gilliam J, Fraser D (2001) Movement in corridors: enhancement by predation threat, disturbance, and habitat structure. Ecology 82:258–273

    Google Scholar 

  • Gloria-Soria A, Azevedo RBR (2008) npr-1 regulates foraging and dispersal strategies in Caenorhabditis elegans. Curr Biol 18:1694–1699. doi:10.1016/j.cub.2008.09.043

    CAS  PubMed  Google Scholar 

  • Goodacre SL, Martin OY, Bonte D et al (2009) Microbial modification of host long-distance dispersal capacity. BMC Biol 7:32. doi:10.1186/1741-7007-7-32

    PubMed Central  PubMed  Google Scholar 

  • Haag CR, Saastamoinen M, Marden JH, Hanski I (2005) A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proc R Soc B Biol Sci 272:2449–2456. doi:10.1098/rspb.2005.3235

    Google Scholar 

  • Hanski I (1999) Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87:209–219

    Google Scholar 

  • Hanski I, Gaggiotti O (2004) Ecology, genetics, and evolution of metapopulations. Elsevier, Amsterdam

    Google Scholar 

  • Hauzy C, Hulot FD, Gins A, Loreau M (2007) Intra- and interspecific density-dependent dispersal in an aquatic prey-predator system. J Anim Ecol 76:552–558. doi:10.1111/j.1365-2656.2007.01227.x

    PubMed  Google Scholar 

  • Heidinger IMM, Hein S, Bonte D (2010) Patch connectivity and sand dynamics affect dispersal-related morphology of the blue-winged grasshopper Oedipoda caerulescens in coastal grey dunes. Insect Conserv Divers 3:205–212. doi:10.1111/j.1752-4598.2010.00089.x

    Google Scholar 

  • Heino J (2013) Environmental heterogeneity, dispersal mode, and co-occurrence in stream macroinvertebrates. Ecol Evol 3:344–355. doi:10.1002/ece3.470

    PubMed Central  PubMed  Google Scholar 

  • Heinz SK, Strand E (2006) Adaptive patch searching strategies in fragmented landscapes. Evol Ecol 20:113–130. doi:10.1007/s10682-005-5378-y

    Google Scholar 

  • Howeth JG, Weis JJ, Brodersen J et al (2013) Intraspecific phenotypic variation in a fish predator affects multitrophic lake metacommunity structure. Ecol Evol 3:5031–5044. doi:10.1002/ece3.878

    PubMed Central  PubMed  Google Scholar 

  • Jacob S, Chaine AS, Schtickzelle N, Huet M, Clobert J (in press) Social information from immigrants: multiple immigrant-based sources of information for dispersal decisions in a ciliate. J Anim Ecol. doi:10.1111/1365-2656.12380

  • Johst K, Brandl R, Eber S (2002) Metapopulation persistence in dynamic landscapes: the role of dispersal distance. Oikos 98:263–270

    Google Scholar 

  • Juette T, Cucherousset J, Cote J (2014) Animal personality and the ecological impacts of freshwater non-native species. Curr Zool 60:417–427

    Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. doi:10.1111/j.1461-0248.2004.00684.x

    Google Scholar 

  • Kim SY, Torres R, Drummond H (2009) Simultaneous positive and negative density-dependent dispersal in a colonial bird species. Ecology 90:230–239

    PubMed  Google Scholar 

  • Laine AL, Burdon JJ, Dodds PN, Thrall PH (2011) Spatial variation in disease resistance: from molecules to metapopulations. J Ecol 99:96–112. doi:10.1111/j.1365-2745.2010.01738.x

    PubMed Central  PubMed  Google Scholar 

  • Lambin X, Aars J, Piertney S (2001) Dispersal, intraspecific competition, kin competition and kin facilitation: a review of the empirical evidence. In: Clobert J, Danchin E, Dhondt A, Nichols J (eds) Dispersal. Oxford University Press, Oxford

    Google Scholar 

  • Le Galliard J, Ferrière R, Clobert J (2005) Effect of patch occupancy on immigration in the common lizard. J Anim Ecol 74:241–249. doi:10.1111/j.1365-2656.2004.00912.x

    Google Scholar 

  • Le Galliard J-F, Rémy A, Ims RA, Lambin X (2012) Patterns and processes of dispersal behaviour in arvicoline rodents. Mol Ecol 21:505–523. doi:10.1111/j.1365-294X.2011.05410.x

    PubMed  Google Scholar 

  • Legrand D, Guillaume O, Baguette M et al (2012) The Metatron: an experimental system to study dispersal and metaecosystems for terrestrial organisms. Nat Methods 9:828–833

    CAS  PubMed  Google Scholar 

  • Legrand D, Trochet A, Moulherat S et al (in press) Ranking the ecological causes of dispersal in a butterfly. Ecography

  • Leibold MA, Holyoak M, Mouquet N et al (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. doi:10.1111/j.1461-0248.2004.00608.x

    Google Scholar 

  • Leimar O, Norberg U (1997) Metapopulation extinction and genetic variation in dispersal-related traits. Oikos 80:448–458

    Google Scholar 

  • Loehle C (2012) A conditional choice model of habitat selection explains the source–sink paradox. Ecol Model 235–236:59–66. doi:10.1016/j.ecolmodel.2012.03.037

    Google Scholar 

  • Logue JB, Mouquet N, Peter H, Hillebrand H (2011) Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol Evol 26:482–491. doi:10.1016/j.tree.2011.04.009

    PubMed  Google Scholar 

  • Lowe WH, McPeek MA (2014) Is dispersal neutral? Trends Ecol Evol 29:444–450. doi:10.1016/j.tree.2014.05.009

    PubMed  Google Scholar 

  • Martín González AM, Dalsgaard B, Olesen JM (2010) Centrality measures and the importance of generalist species in pollination networks. Ecol Complex 7:36–43. doi:10.1016/j.ecocom.2009.03.008

    Google Scholar 

  • Michel MJ (2011) Spatial dependence of phenotype-environment associations for tadpoles in natural ponds. Evol Ecol 25:915–932. doi:10.1007/s10682-010-9441-y

    Google Scholar 

  • O’Riain M, Jarvis J, Faulkes C (1996) A dispersive morph in the naked mole-rat. Nature 380:619–621

    PubMed  Google Scholar 

  • Pennekamp F, Mitchell KA, Chaine A, Schtickzelle N (2014) Dispersal propensity in tetrahymena thermophila ciliates-a reaction norm perspective. Evolution 68:2319–2330. doi:10.1111/evo.12428

    PubMed  Google Scholar 

  • Poethke H, Pfenning B, Hovestadt T (2007) The relative contribution of individual and kin selection to the evolution of density-dependent dispersal rates. Evol Ecol Res 9:41–50

    Google Scholar 

  • Post D, Palkovacs E, Schielke E, Dodson S (2008) Intraspecific variation in a predator affects community structure and cascading trophic interactions. Ecology 89:2019–2032

    PubMed  Google Scholar 

  • Pruitt JN, Cote J, Ferrari MCO (2012) Behavioural trait variants in a habitat-forming species dictate the nature of its interactions with and among heterospecifics. Funct Ecol 26:29–36. doi:10.1111/j.1365-2435.2011.01922.x

    Google Scholar 

  • Reiss J, Bridle JR, Montoya JM, Woodward G (2009) Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol Evol 24:505–514

    PubMed  Google Scholar 

  • Rémy A, Le Galliard J-F, Gundersen G et al (2011) Effects of individual condition and habitat quality on natal dispersal behaviour in a small rodent. J Anim Ecol 80:929–937. doi:10.1111/j.1365-2656.2011.01849.x

    PubMed  Google Scholar 

  • Resetarits W, Binckley C (2009) Spatial contagion of predation risk affects colonization dynamics in experimental aquatic landscapes. Ecology 90:869–876

    PubMed  Google Scholar 

  • Ridley M (2004) Natural selection and variation. Evolution, 3rd edn. Blackwell, New York, pp 71–92

    Google Scholar 

  • Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253

    Google Scholar 

  • Ronce O, Clobert J (2012) Dispersal syndromes. In: Clobert J, Baguette M, Benton T, Bullock J (eds) Dispersal ecology and evolution. Oxford University Press, Oxford, pp 119–138

    Google Scholar 

  • Selonen V, Hanski IK (2010) Decision making in dispersing Siberian flying squirrels. Behav Ecol 21:219–225. doi:10.1093/beheco/arp179

    Google Scholar 

  • Selonen V, Hanski I (2012) Dispersing Siberian flying squirrels (Pteromys volans) locate preferred habitats in fragmented landscapes. Can J Zool 90:885–892

    Google Scholar 

  • Shine R, Brown GP, Phillips BL (2011) An evolutionary process that assemble phenotypes through space rather than through time. Proc Natl Acad Sci USA 108:5708–5711

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sih A, Bolnick DI, Luttbeg B et al (2010) Predator-prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119:610–621. doi:10.1111/j.1600-0706.2009.18039.x

    Google Scholar 

  • Sih A, Cote J, Evans M et al (2012) Ecological implications of behavioural syndromes. Ecol Lett 15:278–289. doi:10.1111/j.1461-0248.2011.01731.x

    PubMed  Google Scholar 

  • Sloggett JJ, Weisser WW (2002) Parasitoids induce production of the dispersal morph of the pea aphid, acyrthosiphon pisum. Oikos 98:323–333

    Google Scholar 

  • Stamps J (2001) Habitat selection by dispersers: integrating proximate and ultimate approaches. In: Clobert J, Baguette M, Benton T, Bullock J (eds) Dispersal. Oxford University Press, Oxford, pp 230–242

    Google Scholar 

  • Stevens VM, Trochet A, Blanchet S et al (2013) Dispersal syndromes and the use of life-histories to predict dispersal. Evol Appl 6:630–642. doi:10.1111/eva.12049

    PubMed Central  PubMed  Google Scholar 

  • Stevens VM, Whitmee S, Le Galliard J-F et al (2014) A comparative analysis of dispersal syndromes in terrestrial and semi-terrestrial animals. Ecol Lett 17:1039–1052. doi:10.1111/ele.12303

    PubMed  Google Scholar 

  • Trochet A, Legrand D, Larranaga N et al (2013) Population sex ratio and dispersal in experimental, two-patch metapopulations of butterflies. J Anim Ecol 82(5):946–955

    PubMed  Google Scholar 

  • Urban MC, Leibold MA, Amarasekare P et al (2008) The evolutionary ecology of metacommunities. Trends Ecol Evol 23:311–317. doi:10.1016/j.tree.2008.02.007

    PubMed  Google Scholar 

  • Van Allen BG, Bhavsar P (2014) Natal habitat drive density-dependent scaling of dispersal decisions. Oikos 123:699–704

    Google Scholar 

  • Violle C, Enquist BJ, McGill BJ et al (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27:244–252. doi:10.1016/j.tree.2011.11.014

    PubMed  Google Scholar 

  • Vuilleumier S, Possingham HP (2006) Does colonization asymmetry matter in metapopulations? Proc R Soc B Biol Sci 273:1637–1642. doi:10.1098/rspb.2006.3469

    Google Scholar 

  • Wade M, McCauley D (1988) Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42:995–1005

    Google Scholar 

  • West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20:249–278

    Google Scholar 

  • West-Eberhard M (2003) Developmental plasticity and evolution. Oxford University Press, New York

    Google Scholar 

  • Wolf M, Weissing FJ (2012) Animal personalities: consequences for ecology and evolution. Trends Ecol Evol 27:452–461. doi:10.1016/j.tree.2012.05.001

    PubMed  Google Scholar 

  • Wooster D, Sih A (1995) A review of the drift and activity responses of stream prey to predator presence. Oikos 73:3–8

    Google Scholar 

  • Zera AJ, Brisson JA (2012) Quantitative, physiological, and molecular genetics of dispersal/migration. In: Clobert J, Baguette M, Benton T, Bullock J (eds) Dispersal: causes and consequences. Oxford University Press, Oxford

    Google Scholar 

  • Zera AJ, Denno RF (1997) Physiology and ecology of dispersal polymorphism in insects. Ann Rev Entomol 42:207–230

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the ANR INDHET to SJ and JCl, FNRS-F.S.R. and Catholic University of Louvain to DL, ANR-12-JSV7-0004-01 to JCo and a Ph.D. scholarship from MESR (Ministère de l’Enseignement Supérieur et de la Recherche) to EB. JCo was supported by an ANR-12-JSV7-0004-01 and by the ERA-Net BiodivERsA, with the national funder ONEMA, part of the 2012–2013 BiodivERsA call for research proposals. This work is part of the ‘Laboratoire d’Excellence (LABEX)’ entitled TULIP (ANR-10-LABX-41), and the National Infrastructure AnaEE-France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Staffan Jacob.

Glossary

Context-dependent dispersal

Correlations between dispersal behaviour at each stage and ecological conditions. These conditions include abiotic conditions (e.g. temperature, humidity, soil composition), population/social contexts (e.g. density, relatedness, sex-ratio) and interspecific interactions/community composition (e.g. predation risk, parasitism, prey abundance).

Dispersal syndrome

A suite of morphological, behavioural, physiological and life-history traits characterizing dispersers in comparison to residents. These suites result from the interaction between phenotype- and context-dependencies of dispersal and can thus vary with ecological contexts of dispersal.

Habitat matching

Dispersal decisions consisting in moving through the landscape in order to find and settle in the environmental context that best match their phenotype, providing individuals with higher performances than in other habitats. This process results in a match between individual phenotype and habitat ecological conditions. Habitat matching therefore consists in phenotype- and context-dependent dispersal decisions at emigration and/or immigration.

Local adaptation

Increase of individual’s performance driven by genetic adaptation to the local ecological context over generations.

Phenotype-dependent dispersal

Correlations between dispersal behaviour at each stage and individual morphological, behavioural, physiological and life-history traits. These correlations can be genetically determined or can vary with ecological conditions, including conditions involved in context-dependent dispersal.

Phenotypic plasticity

Ability of a given genotype to produce different alternative phenotypes according to the environmental conditions.

Metacommunity

A group of communities that are spatially separated and connected by the dispersal of one or several species. Metacommunity dynamics result from complex interactions between extinctions and re-colonizations for each species constituting communities.

Metapopulation

A group of populations that are spatially separated and connected by dispersal. Metapopulation dynamics result from extinctions and re-colonization events. Metapopulations often result from landscape fragmentation where habitat patches are being surrounded by unsuitable matrix and become more isolated from each other.

Random and non-random dispersal

Random dispersal is active or passive movement from a natal/breeding site to another breeding site regardless of their ecological characteristics and phenotypic attributes of candidate dispersers. Non-random dispersal occurs when dispersal behaviour, at least for one stage (departure, transience, settlement), depends on sites’ ecological condition (context-dependent dispersal) or on individual phenotype (phenotype-dependent dispersal).

Spatial heterogeneity

Spatial structure in the distribution of ecological conditions (i.e. spatial environmental heterogeneity) or of phenotypic traits (i.e. spatial phenotypic heterogeneity) in a landscape.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, S., Bestion, E., Legrand, D. et al. Habitat matching and spatial heterogeneity of phenotypes: implications for metapopulation and metacommunity functioning. Evol Ecol 29, 851–871 (2015). https://doi.org/10.1007/s10682-015-9776-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-015-9776-5

Keywords

Navigation