Skip to main content
Log in

The evolution of mutualism from reciprocal parasitism: more ecological clothes for the Prisoner’s Dilemma

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Many mutualisms involve reciprocal exploitation, such that each species in a mutualism is a consumer of a resource provided by the other. Frequently, such mutualisms are reformed each generation, and where they involve close physiological contact, such as between mycorrhizal fungi and plants, they can be considered as examples of reciprocal parasitism. Here we place such interactions in the framework of the Prisoner’s Dilemma, and examine the conditions for the spread of mutualism using a population genetics model analogous to that used for understanding the genetic and numerical dynamics of host-parasite interactions. Genetic variants within each of two species determine whether the interaction is mutualistic or selfish, the latter being represented by resistance to being exploited or parasitized. We assume that there are fitness costs to resistance which are present even in the absence of the interaction. Just as in host-parasite interactions, we examine the effect of assuming that encounter rates between potential mutualists (and therefore entry into the Prisoner’s Dilemma ‘game’) depend on the density and frequency of the different types interacting individuals. These elements of ecological realism greatly facilitate the evolution of mutualism even in the absence of spatial structure or iterative encounters. Moreover, stable genetic polymorphisms for resistant (selfish) and susceptible (mutualistic) alleles can be maintained, something that is not possible with the classical Prisoner’s Dilemma formulation. The sensitivity of the outcomes to levels of density-dependence and mortality rate suggests environmental as well as genetic processes are likely to be important in determining directions in this pathway to mutualism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar-Trigueros CA, Powell JR, Anderson IC, Antonovics J, Rillig MC (2014) Ecological understanding of root-infecting fungi using trait-based approaches. Trends Plant Sci 19:432–438

    Article  CAS  PubMed  Google Scholar 

  • Antonovics J, Thrall PH (1994) The cost of resistance and the maintenance of genetic polymorphism in host-pathogen systems. Proc R Soc Lond B 257:105–110

    Article  Google Scholar 

  • Antonovics J, Iwasa Y, Hassell MP (1995) A generalized model of parasitoid, venereal, and vector-based transmission processes. Am Nat 145:661–675

    Article  Google Scholar 

  • Baker C, Antonovics J (2012) Evolutionary determinants of genetic variation in susceptibility to infectious diseases in humans. Plos One 7:e29089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biere A, Antonovics J (1996) Sex-specific costs of resistance to the fungal pathogen Ustilago violacea (Microbotryum violaceum) in Silene alba. Evolution 50:1098–1110

    Article  Google Scholar 

  • Boots M, Haraguchi Y (1999) The evolution of costly resistance in host-parasite systems. Am Nat 153:359–370

    Article  Google Scholar 

  • Boots M, White A, Best A, Bowers R (2014) How specificity and epidemiology drive the coevolution of static trait diversity in hosts and parasites. Evolution 68:1594–1606

    Article  PubMed Central  PubMed  Google Scholar 

  • Bowers RG, Boots M, Begon M (1994) Life-history trade-offs and the evolution of pathogen resistance: competition between host strains. Proc R Soc Lond B 257:247–253

    Article  CAS  Google Scholar 

  • Boyd R, Richerson PJ (1992) Punishment allows the evolution of cooperation (or anything else) in sizeable groups. Ethol Sociobiol 13:171–195

    Article  Google Scholar 

  • Bronstein JL (1994) Conditional outcomes in mutualistic interactions. Trends Ecol Evol 9:214–217

    Article  CAS  PubMed  Google Scholar 

  • Bronstein JL (2001) The exploitation of mutualisms. Ecol Lett 4:277–287

    Article  Google Scholar 

  • Chaverri P, Samuels GJ (2013) Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution 67:2823–2837

    PubMed  Google Scholar 

  • Connor RC (1995) The benefits of mutualism: a conceptual framework. Biol Rev 70:427–457

    Article  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. John Murray, London

    Google Scholar 

  • De Mazancourt C, Schwartz MW (2010) A resource ratio theory of competition. Ecol Lett 13:349–359

    Article  PubMed  Google Scholar 

  • Doebeli M, Knowlton N (1998) The evolution of interspecific mutualisms. Proc Natl Acad Sci USA 95:8676–8680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dreber A, Rand DG, Fudenberg D, Nowak MA (2008) Winners don’t punish. Nature 452:348–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Egger KN (2006) The surprising diversity of ascomycetous mycorrhizas. New Phytol 170:421–423

    Article  PubMed  Google Scholar 

  • Fehr E, Gächter S (2002) Altruistic punishment in humans. Nature 415:137–140

    Article  CAS  PubMed  Google Scholar 

  • Fenton A, Antonovics J, Brockhurst MA (2009) Inverse gene-for-gene infection genetics and coevolutionary dynamics. Am Nat 174:E230–E242

    Article  PubMed  Google Scholar 

  • Genkai-Kato M, Yamamura N (1999) Evolution of mutualistic symbiosis without vertical transmission. Theor Popul Biol 55:309–323

    Article  CAS  PubMed  Google Scholar 

  • Gimelfarb A (1988) Processes of pair formation leading to assortative mating in biological populations: encounter-mating model. Am Nat 131:865–884

    Article  Google Scholar 

  • Gorton AJ, Heath KD, Pilet-Nayel ML, Baranger A, Stinchcombe JR (2012) Mapping the genetic basis of symbiotic variation in legume-rhizobium interactions in Medicago trunculata. G3: Genes Genomes Genet 2:1291–1303

    Article  CAS  Google Scholar 

  • Hacskaylo E (1972) Mycorrhiza: the ultimate in reciprocal parasitism. BioScience 22:577–583

    Article  Google Scholar 

  • Hadeler KP (1989) Pair formation in age structured populations. Acta Appl Math 14:91–102

    Article  CAS  PubMed  Google Scholar 

  • Heath KD, Tiffin P (2007) Context dependence in the coevolution of plant and rhizobial mutualists. Proc R Soc Lond B 274:1905–1912

    Article  Google Scholar 

  • Heil M, Gonzalez-Teuber M, Clement LW, Kautz S, Verhaagh M, Bueno JCS (2009) Divergent investment strategies of Acacia myrmecophytes and the coexistence of mutualists and exploiters. Proc Natl Acad Sci USA 106:18091–18096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heinrich B, Raven PH (1972) Energetics and pollination ecology. Science 176:597–602

    Article  CAS  PubMed  Google Scholar 

  • Herre EA, Knowlton N, Mueller U, Rehner SA (1999) The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol 14:49–53

    Article  PubMed  Google Scholar 

  • Holland JN, DeAngelis DL (2010) A consumer-resource approach to density-dependent population dynamics of mutualism. Ecology 91:1286–1295

    Article  PubMed  Google Scholar 

  • Hom EFY, Murray AW (2014) Niche engineering demonstrates a latent capacity for fungal-algal mutualism. Science 345:94–98

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Irwin R, Bronstein JL, Manson JS, Richardson LE (2010) Nectar-robbing: ecological and evolutionary perspectives. Ann Rev Ecol Evol Syst 41:271–292

    Article  Google Scholar 

  • Jansen VAA, van Baalen M (2006) Altruism through beard chromodynamics. Nature 440:663–666

    Article  CAS  PubMed  Google Scholar 

  • Janzen DH (1966) Coevolution of mutualism between ants and acacias in Central America. Evolution 20:249–275

    Article  Google Scholar 

  • Kiers ET, Palmer TM, Ives AR, Bruno JF, Bronstein JL (2010) Mutualisms in a changing world: an evolutionary perspective. Ecol Lett 13:1459–1474

    Article  Google Scholar 

  • Kostitzin VA (1935) Symbiosis, parasitism, and evolution. Reprinted in Scudo FM, Ziegler JR (1978) The golden age of theoretical ecology, 1923–1940. Lect Notes Biomath 22:369–408

  • Law R, Dieckmann U (1998) Symbiosis through exploitation and the merger of lineages in evolution. Proc R Soc Lond B 265:1245–1253

    Article  Google Scholar 

  • Lewis HM, Dumbrell AJ (2013) Evolutionary games of cooperation: insights through integration of theory and data. Ecol Complex. doi:10.1016/j.ecocom.2013.02.007

    Google Scholar 

  • Maynard Smith J (1979) Game theory and the evolution of behaviour. Proc R Soc Lond B 205:475–488

    Article  Google Scholar 

  • Merckx V, Freudenstein JV (2010) Evolution of mycoheterotrophy in plants: a phylogenetic perspective. New Phytol 185:605–609

    Article  PubMed  Google Scholar 

  • Noë R, van Hoof J, Hammerstein P (2001) Economics in nature. Social dilemmas, mate choice and biological markets. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Nowak MA (2006) Five rules for the evolution of co-operation. Science 314:1560–1563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pande S, Merker H, Bohl K, Reichelt M, Schuster S, de Figueiredo LF, Kaleta C, Kost C (2014) Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J 8:953–962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ronsheim M (1997) Distance-dependent performance of asexual progeny in Allium vineale. Am J Bot 84:1279–1284

    Article  CAS  PubMed  Google Scholar 

  • Sachs JL, Simms EL (2008) The origins of uncooperative rhizobia. Oikos 117:961–966

  • Sachs JL, Skophammer RG, Regus JU (2011) Evolutionary transitions in bacterial symbiosis. Proc Natl Acad Sci USA 108(Suppl. 2):10800–10807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sasaki A (2000) Host-parasite coevolution in a multilocus gene-for-gene system. Proc R Soc Lond B 257:2183–2188

    Article  Google Scholar 

  • Scheuring I (2005) The iterated continuous Prisoner’s Dilemma game cannot explain the evolution of interspecific mutualism in unstructured populations. J Theor Biol 232:99–104

    Article  PubMed  Google Scholar 

  • Soetaert K, Petzoldt T, Setzer RW (2010) Solving differential equations in R: package deSolve. J Stat Softw 33:1–25

    Google Scholar 

  • Tan J, Zuniga C, Zengler K (2015) Unraveling interactions in microbial communities—from co-cultures to microbiomes. J Microbiol 53:295–305

    Article  PubMed  Google Scholar 

  • Tanouchi Y, Smith RP, You L (2012) Engineering microbial systems to explore ecological and evolutionary dynamics. Curr Opin Biotech 23:791–797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Tschirren B, Andersson M, Scherman K, Westerdahl H, Raberg L (2012) Contrasting patterns of diversity and population differentiation at the innate immunity gene toll-like receptor 2 (TLR2) in two sympatric rodent species. Evolution 66:720–731

    Article  CAS  PubMed  Google Scholar 

  • van Baalen M, Jansen AA (2001) Dangerous liaisons: the ecology of private interest and public good. Oikos 95:211–224

    Article  Google Scholar 

  • Veiga RSL, Faccio A, Genre A, Pieterse CM, Bonfante P, van der Heiden MGA (2013) Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ 36:1926–1937

    PubMed  Google Scholar 

  • Veldre V, Abarenkov K, Bahram M, Martos F, Selosse M, Tamm H, Koljalg U, Tedersoo L (2013) Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecol 6:256–268

    Article  Google Scholar 

  • Vila-Aiub MM, Neve P, Roux F (2011) A unified approach to the estimation and interpretation of resistance costs in plants. Heredity 107:386–394

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Z, Wu M (2014) Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite. Plos One 9:e11685

    Google Scholar 

  • Webster JP, Woolhouse MEJ (1999) Cost of resistance: relationship between reduced fertility and increased resistance in a snail-schistosome host-parasite system. Proc R Soc Lond B 266:391–396

    Article  Google Scholar 

  • West SA, El Mouden C, Gardner A (2011) Sixteen common misconceptions about the evolution of co-operation in humans. Evol Hum Behav 32:231–262

    Article  Google Scholar 

  • Wilkinson DM (1997) The role of seed dispersal in the evolution of mycorrhizae. Oikos 78:394–396

    Article  Google Scholar 

Download references

Acknowledgments

J.A. is grateful for support from the Humboldt Foundation and for NSF Grant DEB-1115899 as part of the joint NSF-NIH Ecology of Infectious Disease program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janis Antonovics.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonovics, J., Bergmann, J., Hempel, S. et al. The evolution of mutualism from reciprocal parasitism: more ecological clothes for the Prisoner’s Dilemma. Evol Ecol 29, 627–641 (2015). https://doi.org/10.1007/s10682-015-9775-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-015-9775-6

Keywords

Navigation