Evolutionary Ecology

, Volume 28, Issue 2, pp 341–359 | Cite as

Abiotic noise, call frequency and stream-breeding anuran assemblages

  • Fernando Vargas-Salinas
  • Adolfo Amézquita
Original Paper


Environmental noise can be an important selective force modulating signal evolution in species with acoustic communication. Many anuran species breed alongside streams; hence, the sound produced by the flowing water is an important source of noise for acoustic communication. Since calling is physiologically very expensive in anurans, and communication is essential for reproduction, we expected adaptations that reduce environmental masking effects and allow acoustic communication in streamside breeders. This basic assumption of the acoustic adaptation hypothesis has not been yet evaluated at a large phylogenetic scale. We combined ahistorical and phylogenetic methods to test whether anuran species that breed alongside streams call at higher frequencies than species that breed away from streams. We compiled primary and secondary data on body size, breeding habitat, and the dominant frequency of the advertisement call for 110 species; 40 of them breed alongside streams and 70 away from streams. Call frequency was slightly higher and body size was significantly smaller in streamside breeding species. After controlling for the effects of body size and phylogenetic signal, only differences in body size persisted between species breeding at both kinds of habitats. Our data suggest that habitat filtering rather than acoustic adaptation explains the high call frequency of stream breeders. Species with large body size, pleiotropically constrained to utter low-frequency calls, would have succeeded less often in establishing viable populations alongside streams, due to the masking effect of low-frequency noise. Thus, small species calling at relatively high frequencies would be more common there. Although our data do not preclude adaptations to noisy habitats in some anuran species, they do not provide support for the acoustic adaptation hypothesis at a wider phylogenetic scale.


Stream noise Advertisement calls Amphibians Acoustic adaptation Communication 



This research was funded by the Faculty of Sciences, at the Universidad de los Andes, Bogotá. We also thank the Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología “Francisco José de Caldas” COLCIENCIAS for supporting doctoral studies of FVS. Luis A Coloma, Enrique La Marca, Sandra M. Durán, Fernando Montealegre-Zapata, Olga L. Torres and Mauricio Rivera provided important comments and literatura references for this manuscript. Previous version of this manuscript was highly improved by commentaries by Peter M. Narins, two anonymous reviewers and J. A. Endler.


  1. Amézquita A, Hödl W, Lima AP, Castellanos L, Erdtmann L, De Araujo MC (2006) Masking interference and the evolution of the acoustic communication system in the Amazonian dendrobatid frog Allobates femoralis. Evolution 60:1874–1887PubMedGoogle Scholar
  2. Amézquita A, Lima AP, Jehle R, Castellanos L, Ramos O, Crawford AJ, Gasser H, Hödl W (2009) Calls, colours, shape, and genes: a multi-trait approach to the study of geographic variation in the Amazonian frog Allobates femoralis. Biol J Linn Soc 98:826–838Google Scholar
  3. Arch VS, Grafe TU, Narins PM (2008) Ultrasonic signalling by a Bornean frog. Biol Lett 4:19–22PubMedCentralPubMedGoogle Scholar
  4. Bee MA, Swanson EM (2007) Auditory masking of anuran advertisement calls by road traffic noise. Anim Behav 74:1765–1776Google Scholar
  5. Bernal MH, Montealegre DP, Páez CA (2004) Estudio de la vocalización de trece especies de anuros del municipio de Ibagué, Colombia. Rev Acad Col Cienc Exact Fís Nat 28:385–390Google Scholar
  6. Bernal XE, Guarnizo C, Lüddecke H (2005) Geographic variation in advertisement call and genetic structure of Colostethus palmatus (Anura, Dendrobatidae) from the Colombian Andes. Herpetologica 61:395–408Google Scholar
  7. Blomberg SP, Garland T Jr, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745PubMedGoogle Scholar
  8. Boeckle M, Preininger D, Hödl W (2009) Communication in noisy environments I: acoustic signals of Stautorois latopalmatus Boulenger 1887. Herpetologica 65:154–165Google Scholar
  9. Bosch J, De la Riva I, Marquez R (1996) The calling behaviour of Lysapsus limellus and Pseudis paradoxa (Amphibia: Anura: Pseudidae). Folia Zool 45:49–55Google Scholar
  10. Bosch J, De la Riva I (2004) Are frog calls modulated by the environment? An analysis with anuran species from Bolivia. Can J Zool 82:880–888Google Scholar
  11. Bourne GR, Collins AC, Holder AM, McCarthy CL (2001) Vocal communication and reproductive behavior of the frog Colostethus beebei in Guyana. J Herpetol 35:272–281Google Scholar
  12. Brown CH, Waser PM (1984) Hearing and communication in blue monkeys (Cercopithecus mitis). Anim Behav 32:66–75Google Scholar
  13. Brown JL, Twomey E, Amézquita A, Barbosa De Souza M, Caldwell JP, Lötters S, Von May R, Melo-Sampaio PR, Mejía-Vargas D, Perez-Peña P, Pepper M, Poelman EH, Sanchez-Rodriguez M, Summers K (2011) A taxonomic revision of the Neotropical poison frog genus Ranitomeya (Amphibia: Dendrobatidae). Zootaxa 3083:1–120Google Scholar
  14. Brumm H (2004) The impact of environmental noise on song amplitude in a territorial bird. J Anim Ecol 73:434–440Google Scholar
  15. Brumm H, Slabbekoorn H (2005) Acoustic communication in noise. Adv Study Behav 35:151–209Google Scholar
  16. Brumm H, Slater PJB (2006) Ambient noise, motor fatigue, and serial redundancy in chaffinch song. Behav Ecol Sociobiol 60:475–481Google Scholar
  17. Brumm H, Voss K, Koellmer I, Todt D (2004) Acoustic communication in noise: regulation of call characteristics in a New World monkey. J Exp Biol 207:443–448PubMedGoogle Scholar
  18. Capellini I, Nunn CL, McNamara P, Preston BT, Barton RA (2008) Energetic constraints, not predation, influence the evolution of sleep patterning in mammals. Funct Ecol 22:847–853PubMedCentralPubMedGoogle Scholar
  19. Cocroft RB, Ryan MJ (1995) Patterns of advertisement call evolution in toads and chorus frogs. Anim Behav 49:283–303Google Scholar
  20. Cocroft RB, McDiarmid RW, Jaslow AP, Ruíz-Carranza PM (1990) Vocalizations of eight species of Atelopus (Anura: Bufonidae) with comments on communication in the genus. Copeia 1990:631–643Google Scholar
  21. Coloma LA (1995) Ecuadorian frogs of the genus Colostethus (Anura: Dendrobatidae). Misc Publ Mus Nat Hist Univ Kansas 87:1–72Google Scholar
  22. Davies NB, Halliday TR (1979) Competitive mate searching in male common toads, Bufo bufo. Anim Behav 27:1253–1267Google Scholar
  23. Diaz-Uriarte R, Garland T Jr (1996) Testing hypotheses of correlated evolution using phylogenetically independent contrasts: sensitivity to deviations from Brownian motion. Syst Biol 45:27–47Google Scholar
  24. Drewry GE, Rand AS (1983) Characteristics of an acoustic community: Puerto Rican frogs of the genus Eleutherodactylus. Copeia 1983:941–953Google Scholar
  25. Dubois A, Martens J (1984) A case of possible vocal convergence between frogs and a bird in Himalayan torrents. J Ornithol 125:455–463Google Scholar
  26. Duellman WE (1978) The biology of a Ecuatorian herpetofaunal in amazon Ecuador. Univ Kansas Mus Nat Hist Misc Publ 65:1–352Google Scholar
  27. Duellman WE (2001) The Hylid frogs of middle America. Natural History Museum of the University of Kansas, IthacaGoogle Scholar
  28. Duellman WE (2005) Cusco Amazonico. The lives of amphibians and reptiles in an Amazonian rainforest. Comstock Publishing Associates, a division of Cornell University Press, IthacaGoogle Scholar
  29. Duellman WE, Trueb L (1986) Biology of amphibians. McGraw Hill Book Co, New YorkGoogle Scholar
  30. Erdtmann L, Amézquita A (2009) Differential evolution of advertisement call traits in dart-poison frogs (Anura: Dendrobatidae). Ethology 115:801–811Google Scholar
  31. Faivovich J, Haddad CFB, Garcia PCA, Frost DR, Campbell JA, Wheeler WC (2005) Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. Bull Am Mus Nat Hist 294:1–240Google Scholar
  32. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15Google Scholar
  33. Feng AS, Narins PM, Xu C-H, Lin W-Y, Yu Z-L, Qiu Q, Xu ZM, Shen JX (2006) Ultrasonic communication in frogs. Nature 440:333–336PubMedGoogle Scholar
  34. Forrest TG (1994) From sender to receiver: propagation and environmental effects on acoustic signals. Am Zool 34:644–654Google Scholar
  35. Francis CD, Ortega CP, Cruz A (2009) Noise pollution changes avian communities and species interactions. Curr Biol 19:1415–1419PubMedGoogle Scholar
  36. Francis DC, Ortega CP, Cruz A (2011) Noise pollution filters bird communities based on vocal frequency. PLoS ONE 6:1–8Google Scholar
  37. Francis CD, Kleist NJ, Ortega CP, Cruz A (2012) Noise pollution alters ecological services: enhanced pollination and disrupted seed dispersal. Proc R Soc B Biol Sci 279:2727–2735Google Scholar
  38. Frost JS, Platz JE (1983) Comparative assessment of modes of reproductive isolation among four species of leopard frogs (Rana pipiens complex). Evolution 37:66–78Google Scholar
  39. Frost DR, Grant T, Faivovich J, Bain RH, Haas A, De Haddad CFB, Sa RO, Channing A, Wilkinson M, Donnellan SC, Raxworthy CJ, Campbell JA, Blotto BL, Moler P, Drewes RC, Nussbaum RA, Lynch JD, Green DM, Wheeler WC (2006) The amphibian tree of life. Bull Am Mus Nat Hist 297:1–370Google Scholar
  40. Galeotti P, Rubolini D, Dunn PO, Fasola M (2003) Colour polymorphism in birds: causes and functions. J Evolut Biol 16:635–646Google Scholar
  41. Garland T Jr, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32Google Scholar
  42. Garland JRT, Dickerman WA, Janis MC, Jones JA (1993) Phylogenetical analysis of covariance by computer simulation. Syst Biol 42:265–292Google Scholar
  43. Gerhardt HC (1978) Acoustic properties used in call recognition by frogs and toads. In: Fritzsch B, Ryan MJ, Wilczynsky W, Hetherington TE, Walkowiak W (eds) The evolution of amphibian auditory system. Wiley Interscience, Austin, pp 455–483Google Scholar
  44. Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. The University of Chicago Press, ChicagoGoogle Scholar
  45. Gómez JP, Bravo GA, Brumfield RT, Tello JG, Cadena CD (2010) A phylogenetic approach to disentangling the role of competition and habitat filtering in community assembly of Neotropical forest birds. J Anim Ecol 79:1181–1192PubMedGoogle Scholar
  46. Goosem M, Hoskin C, Dawe G (2007) Nocturnal noise levels and edge impacts on amphibian habitats adjacent to Kuranda range road. Report to the marine and tropical sciences research facility. Reef and Rainforest Research Centre Limited, Cairns. In (ed) James Cook University, North Queensland, Australia, pp 76Google Scholar
  47. Grafe TH, Preininger D, Sztatecsny M, Kasah R, Dehling JM, Proksch S, Höld W (2012) Multimodal communication in a noisy environment: a case study of the bornean rock frog Staurois parvus. PLoS ONE 7:1–8Google Scholar
  48. Grafen A (1989) The phylogenetic regression. Phil Trans R Soc B Biol Sci 326:119–157Google Scholar
  49. Grant T, Rodriguez LO (2001) Two new species of frogs of the genus Colostethus (Dendrobatidae) from Peru and a redescription of C. trilineatus (Boulenger, 1883). Am Mus Novit 3355:1–24Google Scholar
  50. Grant T, Frost DR, Caldwell JP, Gagliardo RON, Haddad CFB, Kok PJR, Means DB, Noonan BP, Schargel WE, Wheeler WC (2006) Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bull Am Mus Nat Hist 299:1–262Google Scholar
  51. Greding EJ Jr (1976) Call of the tropical American frog Rana palmipes Spix (Amphibia, Anura, Ranidae). J Herpetol 10:263–264Google Scholar
  52. Guayasamín JM, Castroviejo-Fisher S, Ayarzaguena J, Trueb L, Vila C (2008) Phylogenetic relationships of glassfrogs (Centrolenidae) based on mitochondrial and nuclear genes. Mol Phylogenet Evol 48:574–595PubMedGoogle Scholar
  53. Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W (2008) GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131PubMedGoogle Scholar
  54. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, OxfordGoogle Scholar
  55. Hödl W (1977) Call differences and calling site segregation in anuran species from central Amazonian floating meadows. Oecologia 28:351–363Google Scholar
  56. Hödl W, Amézquita A (2001) Visual signaling in anuran amphibians. In: Ryan MJ (ed) Anuran communication. Smithsonian Institution Press, Washington, pp 121–141Google Scholar
  57. Ibáñez R, Smith EM (1995) Systematic status of Colostethus flotador and C. nubicola (Anura: Dendrobatidae) in Panamá. Copeia 1995:446–456Google Scholar
  58. Ibáñez RD, Rand SA, Jaramillo CA (1999) Los Anfibios del monumento natural Barro Colorado, Parque Nacional Soberanía y áreas adyacentes. Panamá. Editorial Mizrachi and Pujol, S.A., PanamáGoogle Scholar
  59. Jacobson SK (1985) Reproductive behavior and male mating success in two species of glass frogs (Centrolenidae). Herpetologica 41:396–404Google Scholar
  60. Juncá FA (1996) Parental care and egg mortality in Colostethus stepheni. J Herpetol 30:292–294Google Scholar
  61. Juncá FA (1998) Reproductive biology of Colostethus stepheni and Colostethus marchesianus (Dendrobatidae), with the description of a new anuran mating behavior. Herpetologica 54:377–387Google Scholar
  62. Jungfer KH (1985) Beitrag zur Kenntnis von Dendrobates speciosus O. Schmidt, 1857 (Salientia: Dendrobatidae). Salamandra 21:263–280Google Scholar
  63. Jungfer KH (1989) Pfeilgiftfrösche der gattung Epipedobates mit rot granuliertem rücken aun dem Oriente von Ecuador und Perú. Salamandra 25:81–98Google Scholar
  64. Jungfer KH, Weygoldt P (1994) The reproductive biology of the leaf frog Phyllomedusa lemur Boulenger, 1882, and a comparison with other members of the Phyllomedusinae. Revue française d’aquariologie 21:57–64Google Scholar
  65. Kime NM, Turner WR, Ryan MJ (2000) The transmission of advertisement calls in Central American frogs. Behav Ecol 11:71–83Google Scholar
  66. La Marca E (1994) Taxonomy of the frogs of the genus Mannophryne (Amphibia: Anura: Dendrobatidae). Publ Asoc Amigos Doñana 4:1–75Google Scholar
  67. Lamb T (1984) Amplexus displacement in the southern toad Bufo terrestris. Copeia 1984:1023–1025Google Scholar
  68. Lee JC (1996) The amphibians and reptiles of the Yucatan Peninsula. Comstock Publishing Associates, Cornell University Press, IthacaGoogle Scholar
  69. Lescure J, Marty C (2000) Atlas des amphibiens de Guyane. Museum national d’histoire naturelle, ParisGoogle Scholar
  70. Lima AP, Caldwell JP (2001) A new Amazonian species of Colostethus with sky blue digits. Herpetologica 57:180–189Google Scholar
  71. Lima PA, Magnusson WE, Menin M, Erdtman LK, Rodrigues DJ, Keller C, Höld W (2006) Guide to the frogs of Reserva Adolpho Ducke, central Amazonia. Instituto Nacional de Pesquisas da Amazônia–INPA, Manaus, BrazilGoogle Scholar
  72. Lötters S (1996) The Neotropical toad genus Atelopus: checklist, biology, distribution. M. Vences & F. Glaw Verlags GbR, KölnGoogle Scholar
  73. Lötters S, Reichle S, Jungfer KH (2003) Advertisement calls of Neotropical poison frogs (Amphibia: Dendrobatidae) of the genera Colostethus, Dendrobates and Epipedobates, with notes on dendrobatid call classification. J Nat Hist 37:1899–1911Google Scholar
  74. Lötters S, Jungfer KH, Henkel FW, Schmidt W (2007) Poison frogs: biology, species and captive husbandry. Chimaira, FrankfurtGoogle Scholar
  75. Lougheed SC, Austin JD, Bogart JP, Boag PT, Chek AA (2006) Multi-character perspectives on the evolution of intraspecific differentiation in a neotropical hylid frog. BMC Evol Biol 6:1–16Google Scholar
  76. Love EK, Bee MA (2010) An experimental test of noise-dependent voice amplitude regulation in Cope’s grey treefrog, Hyla chrysoscelis. Anim Behav 80:509–515PubMedCentralPubMedGoogle Scholar
  77. Lüddecke H (1999) Behavioral aspects of the reproductive biology of the Andean frog Colostethus palmatus (Amphibia: Dendrobatidae). Rev Acad Col Cienc Exact Fís Nat 23:303–316Google Scholar
  78. Lüddecke H (2002) Male and female responses to call playbacks in the Andean frog Colostethus subpunctatus. Amphibia-Reptilia 23:141–150Google Scholar
  79. Luther DA, Wiley RH (2009) Production and perception of communicatory signals in a noisy environment. Biol Lett 5:183–187PubMedCentralPubMedGoogle Scholar
  80. Lyon RH (1973) Propagation of environmental noise. Science 179:1083–1090PubMedGoogle Scholar
  81. Maire V, Gross N, Börger L, Proulx RI, Wirth C, et al (2012) Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytol 196: 497–509Google Scholar
  82. Martin WF (1972) Evolution of vocalization in the genus Bufo. In: Blair WF (ed) Evolution in the genus Bufo. University of Texas Press, Austin, pp 279–309Google Scholar
  83. Martins EP (2000) Adaptation and the comparative method. Trends Ecol Evol 15:296–299PubMedGoogle Scholar
  84. Martins EP, Hansen TF (1996) The statistical analysis of interspecific data: a review and evaluation of phylogenetic comparative methods. In: Martins EP (ed) Phylogenies and the comparative method in animal behavior. Oxford University Press, New York, pp 22–75Google Scholar
  85. Martins IA, Jim J (2003) Bioacoustic analysis of advertisement call in Hyla nana and Hyla sanborni (Anura, Hylidae) in Botucatu, Sao Paulo, Brazil. Braz J Biol 63:507–516PubMedGoogle Scholar
  86. Martins EP, Diniz JAF, Housworth EA (2002) Adaptive constraints and the phylogenetic comparative method: a computer simulation test. Evolution 56:1–13PubMedGoogle Scholar
  87. Mendelson JR III, Campbell JA (1999) The taxonomic status of populations referred to Hyla chaneque (Anura: Hylidae) in southern Mexico, with the description of a new treefrog from Oaxaca. J Herpetol 33:80–86Google Scholar
  88. Menéndez-Guerrero P (2001) Ecología trófica de la comunidad de anuros del Parque Nacional Yasuní en la amazonía ecuatoriana. Pontificia Universidad Católica del Ecuador, ThesisGoogle Scholar
  89. Moen SD, Wiens JA (2009) Phylogenetic evidence for competitively driven divergence: body-size evolution in Caribbean treefrogs (Hylidae: Osteopilus). Evolution 63:195–214PubMedGoogle Scholar
  90. Morales VR (1992) Dos especies nuevas de Dendrobates (Anura: Dendrobatidae) para Perú. Caribb J Sci 28:191–199Google Scholar
  91. Myers CW (1982) Spotted poison frogs: descriptions of three new Dendrobates from western Amazonia, and resurrection of a lost species from ‘Chiriqui’. Am Mus Novit 2721:1–23Google Scholar
  92. Myers CW, Daly JW (1976) Preliminary evaluation of skin toxins and vocalisations in taxonomic and evolutionary studies of poison-dart frogs (Dendrobatidae). Bull Am Mus Nat Hist 157:173–262Google Scholar
  93. Myers CW, Daly JW (1979) A name for the poison frog of Cordillera Azul, eastern Peru, with notes on its biology and skin toxins (Dendrobatidae). Am Mus Novit 2674:1–24Google Scholar
  94. Myers CW, Duellman WE (1982) Anew species of Hyla from Cerro Colorado and other tree frog records and geographical notes from western Panama. Am Mus Novit 2752:1–32Google Scholar
  95. Myers CW, Daly JW, Malkin B (1978) A dangerously toxic new frog (Phyllobates) used by Embera Indians of western Colombia with discussion of blowgun fabrication and dart poisoning. Bull Am Mus Nat Hist 161:309–365Google Scholar
  96. Myers CW, Daly JW, Martinez V (1984) An arboreal poison frog (Dendrobates) from western Panama. Am Mus Novit 2783:1–20Google Scholar
  97. Narins PM, Smith SL (1986) Clinal variation in anuran advertisement calls basis for acoustic isolation? Behav Ecol Sociobiol 19:135–142Google Scholar
  98. Narins PM, Feng AS, Lin W, Schnitzler H-U, Denzinger A, Suthers RA, Xu C (2004) Old World frog and bird vocalizations contain prominent ultrasonic harmonics. J Acous Soc Am 115:910–913Google Scholar
  99. Nevo E (1973) Adaptive variation in size of cricket frogs. Ecology 54:1271–1281Google Scholar
  100. Ord TJ, Martins EP (2006) Tracing the origins of signal diversity in anole lizards: phylogenetic approaches to inferring the evolution of complex behaviour. Anim Behav 71:1411–1429Google Scholar
  101. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290PubMedGoogle Scholar
  102. Parris KM (2002) More bang for your buck: the effect of caller position, habitat and chorus noise on the efficiency of calling in the spring peeper. Ecol Model 156:213–224Google Scholar
  103. Parris KM, Schneider A (2009) Impacts of traffic noise and traffic volume on birds of roadside habitats. Ecol Soc 14:29Google Scholar
  104. Patricelli GL, Blickley JL (2006) Avian communication in urban noise: causes and consequences of vocal adjustment. Auk 123:639–649Google Scholar
  105. Penna M, Solis R (1998) Frog call intensities and sound propagation in the South American temperate forest region. Behav Ecol Sociobiol 42:371–381Google Scholar
  106. Platz JE, Frost JS (1984) Rana yavapaiensis, a new species of leopard frog (Rana pipiens complex). Copeia 1984:940–948Google Scholar
  107. Platz JE, Mecham JS (1979) Rana chiracahuensis, a new species of leopard frog (Rana pipiens complex) from Arizona. Copeia 1979:383–390Google Scholar
  108. Porter KR (1966) Mating calls of six Mexican and Central American toads (genus Bufo). Herpetologica 22:60–67Google Scholar
  109. Pramuk JB (2006) Phylogeny of South American Bufo (Anura: Bufonidae) inferred from combined evidence. Zool J Linn Soc 146:407–452Google Scholar
  110. Preininger D, Boeckle M, Hödl W (2007) Comparison of anuran acoustic communities of two habitat types in the Danum Valley Conservation Area, Sabah, Malaysia. Salamandra 43:129–138Google Scholar
  111. Proppe DS, Sturdy CB, St Clair CC (2013) Anthropogenic noise decreases urban songbird diversity and may contribute to homogenization. Global Change Biol 19:1075–1084Google Scholar
  112. Pyron RA, Wiens JA (2011) A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol Phylogenet Evol 61:543–583PubMedGoogle Scholar
  113. Pytte CL, Rusch KM, Ficken MS (2003) Regulation of vocal amplitude by the blue-throated hummingbird, Lampornis clemenciae. Anim Behav 66:703–710Google Scholar
  114. Rheindt FE (2003) The impact of roads on birds: does song frequency play a role in determining susceptibility to noise pollution? J Ornithol 144:295–306Google Scholar
  115. Rodriguez LO, Duellman WE (1994) Guide to the frogs of the Iquitos region, Amazonian Perú. Univ Kansas Mus Nat Hist Spec Public 22:1–80Google Scholar
  116. Rodriguez L, Myers CW (1993) A new poison frog from Manu National Park, southeastern Peru (Dendrobatidae, Epipedobates). Am Mus Novit 3068:1–15Google Scholar
  117. Ryan MJ (1987) Constraints and patterns in the evolution of anuran acoustic communication. In: Fritzsch B, Ryan MJ, Wilczynsky W, Hetherington TE, Walkowiak W (eds) The evolution of amphibian auditory system. Wiley Interscience, Austin, pp 637–677Google Scholar
  118. Ryan MJ, Brenowitz EA (1985) The role of body size phylogeny and ambient noise in the evolution of bird song. Am Nat 126:87–100Google Scholar
  119. Ryan MJ, Wilczynski W (1991) Evolution of intraspecific variation in the advertisement call of a cricket frog (Acris crepitans Hylidae). Biol J Linn Soc 44:249–272Google Scholar
  120. Santos JC, Coloma LA, Summers K, Caldwell JP, Ree R, Cannatella DC (2009) Amazonian amphibian diversity is primarily derived from Late Miocene Andean lineages. PLoS Biol 7:448–461Google Scholar
  121. Savage JM (2002) The amphibians and reptiles of Costa Rica: a herpetofauna between two continents, between two seas. University of Chicago Press, ChicagoGoogle Scholar
  122. Schmidt W (1965) Some aspects of the water economies of nine species of amphibians. Ecology 46:261–269Google Scholar
  123. Schwartz JJ (1987) The function of call alternation in anuran amphibians: a test of three hypotheses. Evolution 41:461–471Google Scholar
  124. Señaris JC, Ayarzagüena J (2001) Una nueva especie de rana de cristal del género Hyalinobatrachium (Anura: Centrolenidae) del delta del río Orinoco, Venezuela. Rev Biol Trop 49:1083–1093Google Scholar
  125. Sihler A, Sihler G (2006) Dendrobase Ranch. Available from
  126. Silverstone PA (1975) A revision of the poison: arrow frogs of the genus Dendrobates Wagler. Nat Hist Bull Angeles County Sci Bull 21:1–55Google Scholar
  127. Slabbekoorn H (2013) Songs of the city: noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Anim Behav 85:1089–1099Google Scholar
  128. Slabbekoorn H, Smith TB (2002) Bird song, ecology and speciation. Philos Trans R Soc Lond B Biol Sci 357:493–503PubMedGoogle Scholar
  129. Starrett PH, Savage JM (1973) The systematic status and distribution of Costa Rican glass-frogs genus Centrolenella (family Centrolenidae), with description of a new species. Bull South Calif Acad Sci 72:57–78Google Scholar
  130. Sullivan BK (1982) Significance of size, temperature and call attributes to sexual selection in Bufo woodhousei australis. J Herpetol 16:103–106Google Scholar
  131. Sullivan BK, Malmos KB (1994) Call variation in the Colorado River toad (Bufo alvarius): behavioral and phylogenetic implications. Herpetologica 50:146–156Google Scholar
  132. Sun JWC, Narins PM (2005) Anthropogenic sounds differentially affect amphibian call rate. Biol Conserv 121:419–427Google Scholar
  133. Wells KD (1980a) Behavioral ecology and social organization of a dendrobatid frog (Colostethus inguinalis). Behav Ecol Sociobiol 6:199–209Google Scholar
  134. Wells KD (1980b) Social behavior and communication of a dendrobatid frog (Colostethus trinitatis). Herpetologica 36:189–199Google Scholar
  135. Wells KD (2001) The energetics of calling frogs. In: Ryan MJ (ed) Anuran communication. Smithsonian Institution Press, Washington, pp 45–60Google Scholar
  136. Wells KD (2007) Ecology and behavior of amphibians. The University of Chicago Press, ChicagoGoogle Scholar
  137. Wilczynski W, Ryan MJ (1999) Geographic variation in animal communication systems. In: Foster SA, Endler JA (eds) Geographic variation in behavior. Oxford University Press, New York, pp 234–261Google Scholar
  138. Witte K, Farris HE, Ryan MJ, Wilczynski W (2005) How cricket frog females deal with a noisy world: habitat-related differences in auditory tuning. Behav Ecol 16:571–579Google Scholar
  139. Zimmerman BL (1983) A comparison of structural features of calls of open and forest habitat frog species in the central Amazon. Herpetologica 39:235–246Google Scholar
  140. Zimmerman E, Rahmann H (1987) Acoustic communication in the poison-arrow frog Phyllobates tricolor: advertisement calls and their effects on behavior and metabolic brain activity of recipients. J Comp Physiol A 160:693–702Google Scholar
  141. Zweifel RC (1968) Effects of temperature, body size, and hybridization on mating calls of toads, Bufo a. americanus and Bufo woodhousii fowleri. Copeia 1968:269–285Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversidad de los AndesBogotáColombia
  2. 2.Programa de Biología, Facultad de Ciencias Básicas y TecnologíasUniversidad del QuindíoArmeniaColombia
  3. 3.ArmeniaColombia

Personalised recommendations