Evolutionary Ecology

, Volume 26, Issue 3, pp 545–558 | Cite as

Influence of multiple factors on plant local adaptation: soil type and folivore effects in Ruellia nudiflora (Acanthaceae)

  • Ilka Ortegón-Campos
  • Luis Abdala-Roberts
  • Víctor Parra-Tabla
  • J. Carlos Cervera
  • Denis Marrufo-Zapata
  • Carlos M. Herrera
Original Paper


Different environmental factors can have contrasting effects on the extent of plant local adaptation (LA). Here we evaluate the influence of folivory and soil type on LA in Ruellia nudiflora by performing reciprocal transplants at two sites in Yucatan (Mexico) while controlling for soil source and folivory level. Soil samples were collected at each site and half of the plants of each source at each site were grown with one soil source and half with the other. After transplanting, we reduced folivory by using an insecticide applied to half of the plants of each population source grown on each soil at each site. This resulted in a fully-crossed design with site, population source, soil source and folivory as main effects. We evaluated LA by means of a significant site × origin interaction showing a home-site advantage of native plants. Additionally, to test for an effect of soil source and folivores on LA, we estimated the three-way interactions of site × origin × soil source and site × origin × folivory. We recorded fruit number and survival throughout an 8-month period. For survival, we found evidence of home-site advantage at one site, while for fecundity we found no evidence of LA and at one site even observed evidence of lower fecundity for local relative to foreign plants. Importantly, folivory had no influence on the degree of home-site advantage for either response variable, while soil source influenced the degree of home-site advantage in fecundity at one site (suggesting some degree of specialization to soil characteristics in R. nudiflora). Our results emphasize the need for simultaneously evaluating multiple factors of influence in tests of LA.


Herbivory Local adaptation Soil conditions Yucatan 



The authors thank G. Pacheco, P. McManus, R. Moo, N. Celaya, P. Telléz and V. Hernández for field assistance, as well as L. Loria, D. Loria, D. Loria, and L. Aldana who kindly provided logistic support and accomodations at the study sites. Special thanks to R. J. Marquis for comments on a previous version of the manuscript, as well to Arjen Biere and two anonymous reviewers who improved the quality of this paper. This study was financially supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT) through a doctoral scholarship to IOC and as part of a grant given to VPT (SEP 2004-CO1-4658A/A1).


  1. Abdala-Roberts L, Marquis RJ (2007) Test of local adaptation to biotic interactions and soil abiotic conditions in the ant-tended Chamaecrista fasciculata (Fabaceae). Oecologia 154:315–326PubMedCrossRefGoogle Scholar
  2. Abdala-Roberts L, Parra-Tabla V, Salinas-Peba L et al (2009) Noncorrelated effects of seed predation and pollination on the perennial herb Ruellia nudiflora remain spatially consistent. Biol J Linn Soc 96:800–807CrossRefGoogle Scholar
  3. Abdala-Roberts L, Parra-Tabla V, Salinas-Peba L et al (2010) Spatial variation in the strength of a trophic cascade involving Ruellia nudiflora (Acanthaceae), an insect seed predator and associated parasitoid fauna in Mexico. Biotropica 42:180–187CrossRefGoogle Scholar
  4. Anderson JT, Geber MA (2009) Demographic source-sink dynamics restrict local adaptation in Elliott’s blueberry (Vaccinium elliottii). Evolution 64:370–384PubMedCrossRefGoogle Scholar
  5. Antonovics J, Bradshaw AD (1970) Evolution of closely related adjacent plant populations. VIII. Clinal patterns at a mine boundary. Heredity 25:349–362CrossRefGoogle Scholar
  6. Bautista F, Aguilar Y, Rivas H et al. (2007) Los suelos del estado de Yucatán. Importancia del binomio suelo-materia orgánica en el desarrollo sostenible. Agencia Española de Cooperación Internacional y Centro de Edafología y Biología Aplicada del SeguraGoogle Scholar
  7. Becker U, Colling G, Dostal P et al (2006) Local adaptation in the monocarpic perennial Carlina vulgaris at different spatial scales across Europe. Oecologia 150:506–518PubMedCrossRefGoogle Scholar
  8. Becker U, Dostal P, Jorritsma-Wienk D et al (2008) The spatial scale of adaptive population differentiation in a wide-spread, well-dispersed plant species. Oikos 117:1865–1873CrossRefGoogle Scholar
  9. Biere A, Verhoeven KJF (2008) Local adaptation and the consequences of being dislocated from coevolved enemies. New Phytol 180:265–268PubMedCrossRefGoogle Scholar
  10. Cervera C, Parra-Tabla V (2009) Seed germination and seedling survival traits of invasive and non-invasive congeneric Ruellia species (Acanthaceae) in Yucatan, Mexico. Plant Ecol 250:285–293CrossRefGoogle Scholar
  11. Chico-Ponce de León PA (1999) Atlas de procesos territoriales de Yucatán. Universidad Autónoma de YucatánGoogle Scholar
  12. Crémieux L, Bischoff A, Smilauerová M et al (2008) Potential contribution of natural enemies to patterns of local adaptation in plants. New Phytol 180:524–533PubMedCrossRefGoogle Scholar
  13. Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol Lett. doi: 10.1111/j.1461-0248.2011.01596.x
  14. Fine PV, Mesones I, Coley PD (2004) Herbivores promote habitat specialization by trees in Amazonian forests. Science 305:663–665PubMedCrossRefGoogle Scholar
  15. Flores S, Espejel I (1994) Tipos de vegetación de la Península de Yucatán. In: Flores S (ed) Etnoflora Yucatanense. Universidad Autónoma de Yucatán, Yucatán, pp 63–70Google Scholar
  16. Galloway LF, Fenster CB (2000) Population differentiation in an annual legume: local adaptation. Evolution 54:1173–1181PubMedGoogle Scholar
  17. Geber MA, Eckhart VM (2005) Experimental studies of adaptation in Clarkia xantiana. II Fitness variation across a subspecies border. Evolution 59:521–531PubMedGoogle Scholar
  18. Gómez JM, Abdelaziz M, Camacho JPM et al (2009) Local adaptation and maladaptation to pollinators in a generalist geographic mosaic. Ecol Lett 12:672–682PubMedCrossRefGoogle Scholar
  19. Hereford J (2010) Does selfing or outcrossing promote local adaptation? Am J Bot 97:298–302PubMedCrossRefGoogle Scholar
  20. Hereford J, Winn AA (2008) Limits to local adaptation in six populations of the annual plant Diodia teres. New Phytol 178:888–896PubMedCrossRefGoogle Scholar
  21. Hoeksema JD, Forde SE (2008) A meta-analysis of factors affecting local adaptation between interacting species. Am Nat 171:275–290PubMedCrossRefGoogle Scholar
  22. Jain SK, Bradshaw AD (1966) Evolution in closely adjacent plant populations. I. The evidence and its theoretical analysis. Heredity 21:407–441CrossRefGoogle Scholar
  23. Jakobsson A, Dinnetz P (2005) Local adaptation and the effects of isolation and population size-the semelparous perennial Carlina vulgaris as a study case. Evol Ecol 19:449–466CrossRefGoogle Scholar
  24. Jurjavcic NL, Harrison S, Wolf A (2002) Abiotic stress, competition, and the distribution of the native annual grass Vulpia microstachysin in a mosaic environment. Oecologia 130:555–562CrossRefGoogle Scholar
  25. Kawecki T, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241CrossRefGoogle Scholar
  26. Kingsolver JG, Pfennig DW, Servedio MR (2002) Migration, local adaptation and the evolution of plasticity. Trends Ecol Evol 17:540–541CrossRefGoogle Scholar
  27. Leger EA, Rice KJ (2007) Assessing the speed and predictability of local adaptation in invasive California poppies (Eschscholzia californica). J Evol Biol 20:1090–1103PubMedCrossRefGoogle Scholar
  28. Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. PLoS ONE 3:e4010PubMedCrossRefGoogle Scholar
  29. Leiss KA, Muller-Scharer H (2001) Performance of reciprocally sown populations of Senecio vulgaris from ruderal and agricultural habitats. Oecologia 128:210–216CrossRefGoogle Scholar
  30. Linhart Y, Grant M (1996) Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst 27:237–277CrossRefGoogle Scholar
  31. Lortie CJ, Aarssen LW (1996) The specialization hypothesis for phenotypic plasticity in plants. Int J Plant Sci 157:484–487CrossRefGoogle Scholar
  32. Macel M, Lawson C, Mortimer SR et al (2007) Climate vs. soil factors in local adaptation of two common plant species. Ecology 88:424–433PubMedCrossRefGoogle Scholar
  33. Nobel PS (1999) Physiochemical and environmental plant physiology. Academic Press, WalthamGoogle Scholar
  34. Nuismer S, Gandon S (2008) Moving beyond common-garden and transplant designs: insight into the causes of local adaptation in species interactions. Am Nat 171:658–668PubMedCrossRefGoogle Scholar
  35. Núñez-Farfán J, Fornoni J, Valverde PL (2007) The evolution of resistance and tolerance to herbivores. Annu Rev Ecol Evol Syst 38:541–566CrossRefGoogle Scholar
  36. Ortegón-Campos I (2010) Adaptación local y diversidad genética de Ruellia nudiflora (Acantheaceae) en el estado de Yucatán. Ph.D. Dissertation. Universidad Autónoma de YucatánGoogle Scholar
  37. Ortegón-Campos I, Parra-Tabla V, Abdala-Roberts L et al (2009) Local adaptation of Ruellia nudiflora (Acanthaceae) to biotic counterparts: complex scenarios revealed when two herbivore guilds are considered. J Evol Biol 22:2288–2297PubMedCrossRefGoogle Scholar
  38. Parker I, Rodriguez J, Loik ME (2003) An evolutionary approach to understanding the biology of invasions: local adaptation and general purpose-genotypes in the weed Verbascum thapsus. Conserv Biol 17:59–72CrossRefGoogle Scholar
  39. Platenkamp GA (1990) Phenotypic plasticity and genetic differentiation in the demography of the grass Anthoxanthum odoratum. J Ecol 78:772–788CrossRefGoogle Scholar
  40. Richards CL, Bossdorf O, Muth NZ et al (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9:981–993PubMedCrossRefGoogle Scholar
  41. Sambatti JB, Rice KJ (2006) Local adaptation, patterns of selection, and gene flow in the Californian serpentine sunflower (Helianthus exilis). Evolution 60:696–710PubMedGoogle Scholar
  42. SAS (2002) Version 9.1. SAS Institute, CaryGoogle Scholar
  43. Schmidt KP, Levin DA (1985) The comparative demography of reciprocally sown populations of Phlox drummondii Hook. I. Survivorships, fecundities, and finite rates of increase. Evolution 39:396–404CrossRefGoogle Scholar
  44. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792PubMedCrossRefGoogle Scholar
  45. Sork V, Stowe KA, Hochwender C (1993) Evidence for local adaptation in closely adjacent subpopulations of northern red oak (Quercus rubra L.) expressed as resistance to leaf herbivores. Am Nat 142:928–936PubMedCrossRefGoogle Scholar
  46. Van Tienderen PH, Van Der Toorn J (1991) Genetic differentiation between populations of Plantago lanceolata I. Local adaptation in three contrasting habitats. J Ecol 79:27–42CrossRefGoogle Scholar
  47. Wright JW, Stanton ML, Scherson R (2006) Local adaptation to serpentine and non-serpentine soils in Collinsia sparsiflora. Evol Ecol Res 8:1–21Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ilka Ortegón-Campos
    • 1
  • Luis Abdala-Roberts
    • 1
    • 2
  • Víctor Parra-Tabla
    • 1
  • J. Carlos Cervera
    • 1
  • Denis Marrufo-Zapata
    • 1
  • Carlos M. Herrera
    • 3
  1. 1.Departamento de Ecología Tropical, Campus de Ciencias Biológicas y AgropecuariasUniversidad Autόnoma de YucatánMéridaMexico
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of California, IrvineIrvineUSA
  3. 3.Estación Biológica de Doñana, Consejo Superior de Investigaciones CientíficasIsla de la CartujaSevillaSpain

Personalised recommendations