Skip to main content

Oviposition deterring infochemicals in ladybirds: the role of phylogeny

Abstract

Faced with an ephemeral prey, aphidophagous ladybirds rely on the hydrocarbons present in the tracks of their larvae to choose an unoccupied patch for egg laying. Although both conspecific and heterospecific larval tracks might deter females from oviposition, the response to the later is often less striking. Several explanations have been suggested to account for this. In this paper we tested the phylogeny hypothesis, which predicts that the chemical composition of the tracks of closely related species of ladybirds will be more similar to one another than to those of more distantly related species. Qualitative and quantitative information on the chemical nature of the larval tracks and a molecular phylogeny of seven species belonging to three different genera are provided, and the congruence between these two sets of results assessed. The results confirm the phylogeny hypothesis and infer a gradual mode of evolution of these infochemicals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Agarwala BK, Yasuda H, Kajita Y (2003) Effect of conspecific and heterospecific feces on foraging and oviposition of two predatory ladybirds: role of fecal cues in predator avoidance. J Chem Ecol 29(2):357–376. doi:10.1023/A:1022681928142

    Article  CAS  PubMed  Google Scholar 

  • Anderson P (2002) Oviposition pheromones in herbivorous and carnivorous insects. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell Publishing, Berlin, pp 235–263

    Google Scholar 

  • Baker TC (2002) Mechanism for saltational shifts in pheromone communication systems. Proc Natl Acad Sci USA 99:13368–13370. doi:10.1073/pnas.222539799

    Article  CAS  PubMed  Google Scholar 

  • Chouteau M, Gibernau M, Barabé D (2008) Relationships between floral characters, pollination mechanisms, life forms, and habitats in Araceae. Bot J Linn Soc 156:29–42

    Google Scholar 

  • Dixon AFG (1998) Aphid ecology, 2nd edn. Chapman and Hall, London

    Google Scholar 

  • Dixon AFG (2007) Body size and resource partitioning in ladybirds. Popul Ecol 49:45–50. doi:10.1007/s10144-006-0019-z

    Article  Google Scholar 

  • Doumbia M, Hemptinne J-L, Dixon AFG (1998) Assessment of patch quality by ladybirds: role of larval tracks. Oecologia 113:197–202. doi:10.1007/s004420050368

    Article  Google Scholar 

  • Fortes ICP, Baugh PJ (1999) Study of analytical on-line pyrolysis of oils from macauba fruit (Acrocomia sclerocarpa M) via GC/MS. J Braz Chem Soc 10:469–477. doi:10.1590/S0103-50531999000600009

    Article  CAS  Google Scholar 

  • Francis GW, Veland K (1981) Alkylthiolation for the determination of double-bond positions in linear alkenes. J Chromatogr A 219:379–384. doi:10.1016/S0021-9673(00)80381-7

    Article  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. doi:10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999(41):95–98

    Google Scholar 

  • Hemptinne J-L, Lognay G, Doumbia M et al (2001) Chemical nature and persistence of the oviposition deterring pheromone in the tracks of the larvae of the two spot ladybird. Chemoecology 11:43–47. doi:10.1007/PL00001831

    Article  CAS  Google Scholar 

  • Hodek I, Honĕk A (1996) Ecology of Coccinellidae. Kluwer, The Netherlands

    Google Scholar 

  • Hunt T, Bergsten J, Levkanicova Z et al (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318:1913–1916. doi:10.1126/science.1146954

    Article  CAS  PubMed  Google Scholar 

  • Kergoat G, Delobel A, Silvain J-F (2004) Phylogeny and host specificity of European seed beetles (Coleoptera, Bruchidae), new insights from molecular and ecological data. Mol Phyl Evol 32:855–865. doi:10.1016/j.ympev.2004.02.019

    Article  CAS  Google Scholar 

  • Klewer N, Růžička Z, Schulz S (2007) (Z)-Pentacos-12-ene, an oviposition-deterring pheromone of Cheilomenes sexmaculata. J Chem Ecol 33:2167–2170. doi:10.1007/s10886-007-9372-4

    Article  CAS  PubMed  Google Scholar 

  • Laubertie E, Martini X, Cadena C et al (2006) The immediate source of oviposition-deterring pheromone produced by larvae of Adalia bipunctata (L.) (Coleoptera, Coccinellidae). J Insect Behav 19(2):231–240. doi:10.1007/s10905-006-9018-3

    Article  Google Scholar 

  • Lockey H (1988) Lipids of the insect cuticle: origin, composition and function. Comp Biochem Physiol B 89:595–645. doi:10.1016/0305-0491(88)90305-7

    Article  Google Scholar 

  • Magro A, Téné JN, Bastin N et al (2007) Assessment of patch quality by ladybirds: relative response to conspecific and heterospecific larval tracks a consequence of habitat similarity? Chemoecology 17:37–45. doi:10.1007/s00049-006-0357-5

    Article  CAS  Google Scholar 

  • Nelson DR (1993) Methyl-branched lipids in insects. In: Stanley-Samuelson DW, Nelson DR (eds) Insect lipids. Chemistry, biochemistry and biology. University of Nebraska Press, Lincoln, pp 271–315

    Google Scholar 

  • Nufio CR, Papaj DR (2001) Host marking behavior in phytophagous insects and parasitoids. Entomol Exp Appl 99:273–293. doi:10.1023/A:1019204817341

    Article  Google Scholar 

  • Oliver TH, Timms JEL, Taylor A et al (2006) Oviposition responses to patch quality in the larch ladybird Aphidecta obliterata (Coleoptera: Coccinellidae): effects of aphid density, and con-and heterospecific tracks. Bull Entomol Res 96:25–34. doi:10.1079/BER2005395

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. doi:10.1093/bioinformatics/14.9.817

    Article  CAS  PubMed  Google Scholar 

  • Roelofs WL, Brown RL (1982) Pheromones and the evolutionary relationships of Tortricidae. Annu Rev Ecol Syst 13:395–422. doi:10.1146/annurev.es.13.110182.002143

    Article  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi:10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  • Růžička Z (1997) Recognition of oviposition-deterring allomones by aphidophagous predators (Neuroptera: Chrysopidae, Coleoptera: Coccinellidae). Eur J Entomol 94:431–434

    Google Scholar 

  • Růžička Z (2001) Oviposition responses of aphidophagous coccinellids to tracks of ladybird (Coleoptera: Coccinellidae) and lacewing (Neuroptera: Chrysopidae) larvae. Eur J Entomol 98:183–188

    Google Scholar 

  • Růžička Z (2003) Perception of oviposition-deterring larval tracks in aphidophagous coccinellids Cycloneda limbifer and Ceratomegilla undecimnotata (Coleoptera: Coccinellidae). Eur J Entomol 100:345–350

    Google Scholar 

  • Růžička Z (2006) Oviposition-deterring effects of conspecific and heterospecific larval tracks Cheilomenes sexmaculata (Coleoptera: Coccinellidae). Eur J Entomol 103:757–763

    Google Scholar 

  • Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Symonds MRE, Elgar MA (2008) The evolution of pheromone diversity. Trends Ecol Evol 23(4):220–228. doi:10.1016/j.tree.2007.11.009

    Article  PubMed  Google Scholar 

  • Symonds MRE, Wertheim B (2005) The mode of evolution of aggregation pheromones in Drosophila species. J Evol Biol 18:1253–1263. doi:10.1111/j.1420-9101.2005.00971.x

    Article  CAS  PubMed  Google Scholar 

  • Vicenti M, Guiglielmetti G, Cassani G et al (1987) Determination of double bond position in diunsaturated compounds by mass spectrometry of dimethyl disulfide derivatives. Anal Chem 59:694–699. doi:10.1021/ac00132a003

    Article  Google Scholar 

  • Wertheim B, Marchais J, Vet LEM et al (2002) Allee effect in larval resource exploitation in Drosophila: an interaction among density of adults, larvae and micro-organisms. Ecol Entomol 27:608–617. doi:10.1046/j.1365-2311.2002.00449.x

    Article  Google Scholar 

  • Whiting M, Carpenter J, Wheeler Q et al (1997) The strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst Biol 46:1–68. doi:10.2307/2413635

    CAS  PubMed  Google Scholar 

  • Yasuda H, Takagi T, Kogi K (2000) Effects of conspecific and heterospecific larval tracks on the oviposition behaviour of the predatory ladybird, Harmonia axyridis (Coleoptera: Coccinellidae). Eur J Entomol 97:551–553

    Google Scholar 

Download references

Acknowledgments

We are indebted to M. Gibernau for statistical advice and F. Magné for help with the extraction of DNA and sequencing. We also thank R. Ware and M. Majerus for supplying C. undecimpunctata and C. quinquepunctata, and N. Osawa for H. axyridis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Magro.

Appendix

Appendix

See Table 2 and 3.

Table 2 Taxa analysed and GenBank accession numbers for DNA sequences
Table 3 Results of the qualitative and quantitative (μg per 30 larvae) analysis of the compounds present in the larval tracks of A. bipunctata (A2), A. decempunctata (A10), C. septempunctata (C7) (from Magro et al. 2007), C. undecimpunctata (C11), C. quinquepunctata (C5), H. axyridis (Ha) and H. quadripunctata (H4) [each the mean of 3 trials]

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Magro, A., Ducamp, C., Ramon-Portugal, F. et al. Oviposition deterring infochemicals in ladybirds: the role of phylogeny. Evol Ecol 24, 251–271 (2010). https://doi.org/10.1007/s10682-009-9304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-009-9304-6

Keywords

  • Oviposition deterring infochemicals
  • Phylogeny
  • Coccinellidae