Evolutionary Ecology

, Volume 24, Issue 1, pp 251–271 | Cite as

Oviposition deterring infochemicals in ladybirds: the role of phylogeny

  • Alexandra Magro
  • Christine Ducamp
  • Felipe Ramon-Portugal
  • Emilie Lecompte
  • Brigitte Crouau-Roy
  • Anthony Frederick George Dixon
  • Jean-Louis Hemptinne
Original Paper


Faced with an ephemeral prey, aphidophagous ladybirds rely on the hydrocarbons present in the tracks of their larvae to choose an unoccupied patch for egg laying. Although both conspecific and heterospecific larval tracks might deter females from oviposition, the response to the later is often less striking. Several explanations have been suggested to account for this. In this paper we tested the phylogeny hypothesis, which predicts that the chemical composition of the tracks of closely related species of ladybirds will be more similar to one another than to those of more distantly related species. Qualitative and quantitative information on the chemical nature of the larval tracks and a molecular phylogeny of seven species belonging to three different genera are provided, and the congruence between these two sets of results assessed. The results confirm the phylogeny hypothesis and infer a gradual mode of evolution of these infochemicals.


Oviposition deterring infochemicals Phylogeny Coccinellidae 



We are indebted to M. Gibernau for statistical advice and F. Magné for help with the extraction of DNA and sequencing. We also thank R. Ware and M. Majerus for supplying C. undecimpunctata and C. quinquepunctata, and N. Osawa for H. axyridis.


  1. Agarwala BK, Yasuda H, Kajita Y (2003) Effect of conspecific and heterospecific feces on foraging and oviposition of two predatory ladybirds: role of fecal cues in predator avoidance. J Chem Ecol 29(2):357–376. doi: 10.1023/A:1022681928142 CrossRefPubMedGoogle Scholar
  2. Anderson P (2002) Oviposition pheromones in herbivorous and carnivorous insects. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell Publishing, Berlin, pp 235–263Google Scholar
  3. Baker TC (2002) Mechanism for saltational shifts in pheromone communication systems. Proc Natl Acad Sci USA 99:13368–13370. doi: 10.1073/pnas.222539799 CrossRefPubMedGoogle Scholar
  4. Chouteau M, Gibernau M, Barabé D (2008) Relationships between floral characters, pollination mechanisms, life forms, and habitats in Araceae. Bot J Linn Soc 156:29–42Google Scholar
  5. Dixon AFG (1998) Aphid ecology, 2nd edn. Chapman and Hall, LondonGoogle Scholar
  6. Dixon AFG (2007) Body size and resource partitioning in ladybirds. Popul Ecol 49:45–50. doi: 10.1007/s10144-006-0019-z CrossRefGoogle Scholar
  7. Doumbia M, Hemptinne J-L, Dixon AFG (1998) Assessment of patch quality by ladybirds: role of larval tracks. Oecologia 113:197–202. doi: 10.1007/s004420050368 CrossRefGoogle Scholar
  8. Fortes ICP, Baugh PJ (1999) Study of analytical on-line pyrolysis of oils from macauba fruit (Acrocomia sclerocarpa M) via GC/MS. J Braz Chem Soc 10:469–477. doi: 10.1590/S0103-50531999000600009 CrossRefGoogle Scholar
  9. Francis GW, Veland K (1981) Alkylthiolation for the determination of double-bond positions in linear alkenes. J Chromatogr A 219:379–384. doi: 10.1016/S0021-9673(00)80381-7 CrossRefGoogle Scholar
  10. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. doi: 10.1080/10635150390235520 CrossRefPubMedGoogle Scholar
  11. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999(41):95–98Google Scholar
  12. Hemptinne J-L, Lognay G, Doumbia M et al (2001) Chemical nature and persistence of the oviposition deterring pheromone in the tracks of the larvae of the two spot ladybird. Chemoecology 11:43–47. doi: 10.1007/PL00001831 CrossRefGoogle Scholar
  13. Hodek I, Honĕk A (1996) Ecology of Coccinellidae. Kluwer, The NetherlandsGoogle Scholar
  14. Hunt T, Bergsten J, Levkanicova Z et al (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318:1913–1916. doi: 10.1126/science.1146954 CrossRefPubMedGoogle Scholar
  15. Kergoat G, Delobel A, Silvain J-F (2004) Phylogeny and host specificity of European seed beetles (Coleoptera, Bruchidae), new insights from molecular and ecological data. Mol Phyl Evol 32:855–865. doi: 10.1016/j.ympev.2004.02.019 CrossRefGoogle Scholar
  16. Klewer N, Růžička Z, Schulz S (2007) (Z)-Pentacos-12-ene, an oviposition-deterring pheromone of Cheilomenes sexmaculata. J Chem Ecol 33:2167–2170. doi: 10.1007/s10886-007-9372-4 CrossRefPubMedGoogle Scholar
  17. Laubertie E, Martini X, Cadena C et al (2006) The immediate source of oviposition-deterring pheromone produced by larvae of Adalia bipunctata (L.) (Coleoptera, Coccinellidae). J Insect Behav 19(2):231–240. doi: 10.1007/s10905-006-9018-3 CrossRefGoogle Scholar
  18. Lockey H (1988) Lipids of the insect cuticle: origin, composition and function. Comp Biochem Physiol B 89:595–645. doi: 10.1016/0305-0491(88)90305-7 CrossRefGoogle Scholar
  19. Magro A, Téné JN, Bastin N et al (2007) Assessment of patch quality by ladybirds: relative response to conspecific and heterospecific larval tracks a consequence of habitat similarity? Chemoecology 17:37–45. doi: 10.1007/s00049-006-0357-5 CrossRefGoogle Scholar
  20. Nelson DR (1993) Methyl-branched lipids in insects. In: Stanley-Samuelson DW, Nelson DR (eds) Insect lipids. Chemistry, biochemistry and biology. University of Nebraska Press, Lincoln, pp 271–315Google Scholar
  21. Nufio CR, Papaj DR (2001) Host marking behavior in phytophagous insects and parasitoids. Entomol Exp Appl 99:273–293. doi: 10.1023/A:1019204817341 CrossRefGoogle Scholar
  22. Oliver TH, Timms JEL, Taylor A et al (2006) Oviposition responses to patch quality in the larch ladybird Aphidecta obliterata (Coleoptera: Coccinellidae): effects of aphid density, and con-and heterospecific tracks. Bull Entomol Res 96:25–34. doi: 10.1079/BER2005395 CrossRefPubMedGoogle Scholar
  23. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. doi: 10.1093/bioinformatics/14.9.817 CrossRefPubMedGoogle Scholar
  24. Roelofs WL, Brown RL (1982) Pheromones and the evolutionary relationships of Tortricidae. Annu Rev Ecol Syst 13:395–422. doi: 10.1146/annurev.es.13.110182.002143 CrossRefGoogle Scholar
  25. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi: 10.1093/bioinformatics/btg180 CrossRefPubMedGoogle Scholar
  26. Růžička Z (1997) Recognition of oviposition-deterring allomones by aphidophagous predators (Neuroptera: Chrysopidae, Coleoptera: Coccinellidae). Eur J Entomol 94:431–434Google Scholar
  27. Růžička Z (2001) Oviposition responses of aphidophagous coccinellids to tracks of ladybird (Coleoptera: Coccinellidae) and lacewing (Neuroptera: Chrysopidae) larvae. Eur J Entomol 98:183–188Google Scholar
  28. Růžička Z (2003) Perception of oviposition-deterring larval tracks in aphidophagous coccinellids Cycloneda limbifer and Ceratomegilla undecimnotata (Coleoptera: Coccinellidae). Eur J Entomol 100:345–350Google Scholar
  29. Růžička Z (2006) Oviposition-deterring effects of conspecific and heterospecific larval tracks Cheilomenes sexmaculata (Coleoptera: Coccinellidae). Eur J Entomol 103:757–763Google Scholar
  30. Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, SunderlandGoogle Scholar
  31. Symonds MRE, Elgar MA (2008) The evolution of pheromone diversity. Trends Ecol Evol 23(4):220–228. doi: 10.1016/j.tree.2007.11.009 CrossRefPubMedGoogle Scholar
  32. Symonds MRE, Wertheim B (2005) The mode of evolution of aggregation pheromones in Drosophila species. J Evol Biol 18:1253–1263. doi: 10.1111/j.1420-9101.2005.00971.x CrossRefPubMedGoogle Scholar
  33. Vicenti M, Guiglielmetti G, Cassani G et al (1987) Determination of double bond position in diunsaturated compounds by mass spectrometry of dimethyl disulfide derivatives. Anal Chem 59:694–699. doi: 10.1021/ac00132a003 CrossRefGoogle Scholar
  34. Wertheim B, Marchais J, Vet LEM et al (2002) Allee effect in larval resource exploitation in Drosophila: an interaction among density of adults, larvae and micro-organisms. Ecol Entomol 27:608–617. doi: 10.1046/j.1365-2311.2002.00449.x CrossRefGoogle Scholar
  35. Whiting M, Carpenter J, Wheeler Q et al (1997) The strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst Biol 46:1–68. doi: 10.2307/2413635 PubMedGoogle Scholar
  36. Yasuda H, Takagi T, Kogi K (2000) Effects of conspecific and heterospecific larval tracks on the oviposition behaviour of the predatory ladybird, Harmonia axyridis (Coleoptera: Coccinellidae). Eur J Entomol 97:551–553Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Alexandra Magro
    • 1
  • Christine Ducamp
    • 1
  • Felipe Ramon-Portugal
    • 1
  • Emilie Lecompte
    • 2
  • Brigitte Crouau-Roy
    • 2
  • Anthony Frederick George Dixon
    • 3
  • Jean-Louis Hemptinne
    • 1
  1. 1.UMR CNRS 5174 “Evolution et diversité biologique”Ecole Nationale de Formation Agronomique, Univ. de ToulouseCastanet Tolosan CedexFrance
  2. 2.UMR CNRS 5174 “Evolution et diversité biologique”, Univ Toulouse 3, Bat IVR3 B2Toulouse 9France
  3. 3.School of Biological SciencesUniversity of East AngliaNorwichUK

Personalised recommendations