Evolutionary Ecology

, Volume 22, Issue 5, pp 675–687 | Cite as

Pre-dispersal seed predation reduces the reproductive compensatory advantage of thrum individuals in Erythroxylum havanense (Erythroxylaceae)

Original Paper


Male-sterility mutations in hermaphroditic species represent the first step in the evolution of gender specialization. Male-sterile individuals commonly compensate the loss of the male function by increasing the number or quality of seeds. Because the magnitude of compensation determines the maintenance of females within populations and the evolution of sexual specialization, plant-animal interactions may affect these evolutionary processes if animals are sensitive to such reproductive asymmetries. Here we explore the effect of seed predation on the reproductive compensation of Erythroxylum havanense, a distylous shrub with morph-biased partial male sterility, during two consecutive years. Seed predation reduced the compensatory advantage of thrums in 1987, but not in 1988. Annual differences in the intensity of seed predation seem to be accounted for differences in the onset and synchrony of flowering. Thus, although seed predators may reduce the compensatory advantage of thrums, their impact is modulated by the environmental cues triggering flowering and insect emergence.


Erythroxylum havanense Heterostyly Pre-dispersal seed predation Reproductive compensatory advantage Tropical dry-forest 



The authors thank María del Carmen Vázquez, Germán Ávila-Sakar, Rubén Pérez-Ishiwara and Gustavo Verduzco for their assistance in the field. They also thank Juan Fornoni for its valuable comments to improve previous versions of this manuscript. This research was supported by grants from UNAM and CONACyT, Mexico.


  1. Aiskainen E, Mutikainen P (2005) Preferences of pollinators and herbivores in gynodioecious Geranium sylvaticum. Ann Bot 95:879–886CrossRefGoogle Scholar
  2. Ashman TL (2002) The role of herbivores in the evolution of separate sexes from hermaphroditism. Ecology 83:1175–1184CrossRefGoogle Scholar
  3. Ashman TL, Penet L (2007) Direct and indirect effects of a sex-biased antagonist on male and female fertility: consequences for reproductive trait evolution in a gender-dimorphic plant. Am Nat 169:595–608PubMedCrossRefGoogle Scholar
  4. Ashman TL, Cole DH, Bradburn M (2004) Sex-differential resistance and tolerance to herbivory in a gynodioecious wild strawberry. Ecology 85:2550–2559CrossRefGoogle Scholar
  5. Augspurger CK (1981) Reproductive synchrony of a tropical shrub: experimental studies on effects of pollinators and seed predators in Hybanthus prunifolius (Violaceae). Ecology 62:775–778CrossRefGoogle Scholar
  6. Avila-Sakar G, Domínguez AC (2000) Parental effects and gender specialization in a tropical heterostylous shrub. Evolution 54:866–877PubMedGoogle Scholar
  7. Barrett SCH (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284 PubMedCrossRefGoogle Scholar
  8. Bell WJ (1990) Searching behaviour. The behavioural ecology of finding resources. Chapman and Hall, CambridgeGoogle Scholar
  9. Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12PubMedCrossRefGoogle Scholar
  10. Brody AK, Mitchell RJ (1997) Effects of experimental manipulation of inflorescence size on pollination and pre-dispersal seed predation in the hummingbird-pollinated plant Ipomopsis aggregata. Oecologia 110:86–93CrossRefGoogle Scholar
  11. Bullock SH, Solís-Magallanes JA (1990) Phenology of canopy trees of a tropical deciduous forest. Biotropica 22:22–35CrossRefGoogle Scholar
  12. Charlesworth D (1981) A further study of the problem of the maintenance of females in gynodioecious species. Heredity 46:27–39CrossRefGoogle Scholar
  13. Charlesworth D (1999) Theories of the evolution of dioecy. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer Verlag, Berlin, pp 33–60Google Scholar
  14. Charlesworth B, Charlesworth D (1978) A model for the evolution of dioecy and gynodioecy. Am Nat 112: 975–997CrossRefGoogle Scholar
  15. Cole DH, Ashman TL (2005) Sexes show differential tolerance to spittlebug damage and consequences of damage for multi-species interactions. Am J Bot 92:1708–1713CrossRefGoogle Scholar
  16. Collin CL, Pennings PS, Rueffler et al (2002) Natural enemies and sex: how seed predators and pathogens contribute to sex-differential reproductive success in a gynodioecious plant. Oecologia 131:94–102CrossRefGoogle Scholar
  17. Cuevas E, Molina-Freaner F, Eguiarte LE, Domínguez CA (2005) Patterns of male sterility within and among populations of the distylous shrub Erythroxylum havanense (Erythroxilaceae). Plant Ecol 176:234–242CrossRefGoogle Scholar
  18. Del-Carlo S, Buzato S (2006) Male sterility and reproductive output in distylous Erythroxylum suberosum (Erythroxylaceae). Biol J Linn Soc London 88:465–474CrossRefGoogle Scholar
  19. Dellaporta SL, Calderon-Urrea A (1993) Sex determination in flowering plants. Plant Cell 5:1241–1251PubMedCrossRefGoogle Scholar
  20. Delph LF, Bailey MA, Marr DL (1999) Seed provisioning in gynodioecious Silene acaulis (Caryophyllaceae). Am J Bot 86:140–144CrossRefGoogle Scholar
  21. Domínguez CA (1990) Consecuencias ecológicas y evolutivas del patrón de floración sincrónico y masivo de Erythroxylum havanense Jacq. (Erythroxylaceae). Dissertation, Universidad Nacional Autónoma de Mexico, MexicoGoogle Scholar
  22. Domínguez CA (1995) Genetic conflicts of interest in plants. Trends Ecol Evol 10:412–416CrossRefGoogle Scholar
  23. Domínguez CA, Dirzo R (1995) Rainfall and flowering synchrony in a tropical shrub: variable selection on the flowering time of Erythroxylum havanense. Evol Ecol 9:204–216CrossRefGoogle Scholar
  24. Domínguez CA, Avila-Sakar G, Vázquez-Santana S et al. (1997) Morph-biased male sterility in the tropical distylous shrub Erythroxylum havanense (Erythroxylaceae). Am J Bot 84:626–632CrossRefGoogle Scholar
  25. Frank SA (1989) The evolutionary dynamics of cytoplasmatic male sterility. Am Nat 133:345–376CrossRefGoogle Scholar
  26. Garcia-Oliva F, Camou A, Maass JM (2002) El clima de la región central de la costa del pacífico mexicano. In: Nogüera Aldrete AN, Vega-Rivera JH, García Aldrete AN, Quesada-Avendaño M (eds) Historia natural de Chamela. Instituto de Biología, UNAM, Mexico City, pp 3–10Google Scholar
  27. Geber MA (1999) Theories of the evolution of sexual dimorphism. In: Geber MA, Dawson TE, Delph LF (eds) Gender and sexual dimorphism in flowering plants. Springer, New York, pp 97–122 Google Scholar
  28. Gentry AH (1974) Flowering phenology and diversity in tropical Bignoniaceae. Biotropica 6:64–68CrossRefGoogle Scholar
  29. Gouyon PH, Couvet D (1987) A conflict between two sexes, females and hermaphrodites. In: Stearns SC (ed) The evolution of sex and its consequences. Birkhäuser, Basel, pp 245–261Google Scholar
  30. Gouyon PH, Vichot F, Van Damme JMM (1991) Nuclear-cytoplasmatic male sterility: single-point equilibria vs. limit cycles. Am Nat 137:498–514CrossRefGoogle Scholar
  31. Graff A (1999). Population sex structure and reproductive fitness in gynodioecious Sidalcea malviflora malviflora (Malvaceae). Evolution 59:1714–1722CrossRefGoogle Scholar
  32. Gryj EO, Domínguez CA (1996) Fruit removal and postdispersal survivorship in the tropical dry forest shrub Erythroxylum havanense: ecological and evolutionary implications. Oecologia 108:368–374Google Scholar
  33. Janzen DH (1971) Seed predation by animals. Annu Rev Ecol Syst 2:465–492CrossRefGoogle Scholar
  34. Janzen DH (1980) Specificity of seed-attacking beetles in a Costa Rican deciduous forest. J Ecol 68:929–952CrossRefGoogle Scholar
  35. Johnson DM, Liebhold AM, Bjornstad ON, McManus ML (2005) Circumpolar variation in periodicity and synchrony among gypsy moth populations. J Anim Ecol 74:882–892CrossRefGoogle Scholar
  36. Jordano P (1987) Avian fruit removal: effects of fruit variation, crop size and insect damage. Ecology 68:1711–1723CrossRefGoogle Scholar
  37. Kelly D, Sork VL (2002) Mast seeding in perennial plants: Why, how, where? Annu Rev Ecol Syst 33:427–447CrossRefGoogle Scholar
  38. Koelewijin HP, Van Damme JMM (1995) Genetics of male sterility in gynodioecious Plantago coronopus I. Cytoplasmic variation. Genetics 139:1749–1758Google Scholar
  39. Leege LM, Wolfe M (2002) Do floral herbivores respond to variation in flower characteristics in Gelsemium semprevivrens (Longaniaceae), a distylous vine? Am J Bot 89:1270–1274CrossRefGoogle Scholar
  40. Lewis D (1941) Male sterility in natural populations of hermaphrodite plants. New Phytol 40:56–63CrossRefGoogle Scholar
  41. Lott EJ (1987) Floristic diversity and structure of upland and arroyo forests of coastal Jalisco. Biotropica 19:228–232CrossRefGoogle Scholar
  42. Naki A, Kato M (1999) Pollination system and evolution of dioecy from distyly in Mussaenda parviflora (Rubiaceae). Plant Species Biol 14:217–227CrossRefGoogle Scholar
  43. Marshal M, Ganders FR (2001) Sex-biased seed predation and the maintenance of females in a gynodioecious plant. Am J Bot 88:1437–1443CrossRefGoogle Scholar
  44. Maurice S, Charlesworth D, Desfeux C, Couvet D, Gouyon PH (1993) The evolution of gender in hermaphrodites of gynodioecious populations with nucleo-cytoplasmic male sterility. Proc R Soc London B 251:253–261CrossRefGoogle Scholar
  45. Maurice S, Belhassen E, Couvet D, Gouyon PH (1994) Evolution of dioecy: can nuclear-cytoplasmatic interactions select for maleness? Heredity 73:346–359PubMedCrossRefGoogle Scholar
  46. Ornelas JF, Gonzáles C, Jiménez L, Lara C, Martínez AJ (2004) Reproductive ecology of distylous Palicourea padifolia (Rubiaceae) in a tropical montane cloud forest. II. Attracting and rewarding mutualistic and antagonistic visitors. Am J Bot 91:1061–1069CrossRefGoogle Scholar
  47. Pailler T, Humeau L, Thompson JD (1998) Distyly and heteromorphic incompatibility in oceanic island species of Erythroxylum (Erythroxylaceae). Plant Syst Evol 213:187–198CrossRefGoogle Scholar
  48. Pannell JR, Verdú M (2006) The evolution of gender specialization from dimorphic hermaphroditism: paths from heterodichogamy to gynodioecy and androecy. Evolution 60:660–673PubMedCrossRefGoogle Scholar
  49. Ramsey M, Vaughton G (2002) Maintenance of gynodioecy in Wurmbea biglandulosa (Colchicaceae): gender differences in seed production and progeny success. Plant Syst Evol 232:189–200CrossRefGoogle Scholar
  50. Reich PB (1995) Phenology of tropical forests – patterns, causes and consequences. Can J Bot 73:164–174CrossRefGoogle Scholar
  51. Rosas LF, Pérez-Alquicira J, Domínguez CA (2005) Environmentally induced variation in fecundity compensation in the morph-biased male-sterile distylous shrub Erythroxylum havanense (Erythroxylaceae). Am J Bot 92:116–122CrossRefGoogle Scholar
  52. Ross MD, Gregorious HR (1985) Selection with gene-cytoplasm interactions. II. Maintenance of gynodioecy. Genetics 109:427–439PubMedGoogle Scholar
  53. SAS Institute (1999) SAS version 8.00. Cary, North Carolina, USAGoogle Scholar
  54. SAS Institute (2001) JMP. Version 4.0.4. Cary, North Carolina, USAGoogle Scholar
  55. Schultz ST (1994) Nucelo-cytoplasmatic male sterility and alternative routes to dioecy. Evolution 48:1933–1945CrossRefGoogle Scholar
  56. Shykoff JA, Kolokotronis SO, Collin SL et al (2003) Effects of male sterility on reproductive traits in gynodioecious plants: a meta-analysis. Oecologia 135:1–9PubMedGoogle Scholar
  57. Stokes ME, Davis CS, Koch GG (2001) Categorical data analysis using the SAS system. SAS Institute, Cary, North Carolina, USAGoogle Scholar
  58. Strauss SY, Irwin RE (2004) Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu Rev Ecol Syst 35:435–466CrossRefGoogle Scholar
  59. Taylor DR, McCauley D, Trimble S (1999) Colonization success of females and hermaphrodites in the gynodioecious plant Silene vulgaris. Evolution 55:745–751CrossRefGoogle Scholar
  60. Uno GE (1982) Comparative reproductive biology of hermaphrodite and male-sterile Iris douglasiana Herb. (Iridaceae). Am J Bot 69: 818–823CrossRefGoogle Scholar
  61. Williams HL, Fenster CB (1998) Ecological and genetic factors contributing to the low frequency of male sterility in Chamaecrista fasciculata (Fabaceae). Am J Bot 85:1243–1250CrossRefGoogle Scholar
  62. Zimmerman M (1980). Reproduction in Polemonium: Pre-dispersal seed predation. Ecology 61:502–506CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoMéxicoMéxico

Personalised recommendations