Skip to main content
Log in

Does kin structure explain the occurrence of workers in a lower termite?

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Kinship plays a fundamental role in the origin of social life. It is also predicted to affect numerous details within animal societies, yet recent studies revealed equivocal results. We tested the influence of relatedness for the occurrence of workers in the termite Cryptotermes secundus. Here individuals are developmentally flexible to remain workers or to become dispersing sexuals that found new colonies. Furthermore, colony relatedness naturally increases with inbreeding and decreases when neighboring colonies fuse. Similar to recent studies on social Hymenoptera, our experimental change in relatedness gave equivocal results. Reducing relatedness within colonies did not have an effect, but individuals in inbred colonies were less likely to disperse and more likely to remain workers as predicted by kinship arguments. Several explanations for the interpretation of these equivocal results are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe T (1987) Evolution of life types in termites. In: Kawano S, Connell JH, Hidaka T (eds) Evolution and coadaptation in biotic communities. University of Tokyo Press, Tokyo

    Google Scholar 

  • Atkinson L, Adams ES (1997) The origins and relatedness of multiple reproductives in colonies of the termite Nasutitermes corniger. Proc R Soc Lond B 264:1131–1136

    Article  Google Scholar 

  • Beekman M, Ratnieks FLW (2003) Power over reproduction in social Hymenoptera. Philos Trans R Soc Lond B Biol Sci 358:1741–1754

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Boomsma JJ, Nielsen J, Sundström L et al (2003) Informational constraints on optimal sex allocation in ants. Proc Natl Acad Sci USA 100:8799–8804

    Article  PubMed  CAS  Google Scholar 

  • Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton

    Google Scholar 

  • Brown WD, Keller L (2000) Colony sex ratios vary with queen number but not relatedness asymmetry in the ant Formica exsecta. Proc R Soc Lond B 267:1751–1757

    Article  CAS  Google Scholar 

  • Bulmer MS, Eldridge SA, Traniello JFA (2001) Variation in colony structure in the subterranean termite Reticulitermes flavipes. Behav Ecol Sociobiol 49:236–243

    Article  Google Scholar 

  • Colegrave N, Ruxton GD (2003) Confidence intervals are a more useful complement to nonsignificant tests than are power calculations. Behav Ecol 14:446–447

    Article  Google Scholar 

  • Crozier RH, Pamilo P (1996) Evolution of social insect colonies: sex allocation and kin selection. Oxford University Press, Oxford

    Google Scholar 

  • DeHeer CJ, Vargo EL (2004) Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space. Mol Ecol 13:431–441

    Article  PubMed  Google Scholar 

  • Foster KR, Wenseleers T, Ratnieks FLW (2006) Kin selection is the key to altruism. Trends Ecol Evol 21:57–60

    Article  PubMed  Google Scholar 

  • Frank SA (1998) Foundations of social evolution. Princeton University Press, Princeton

    Google Scholar 

  • Fuchs A, Heinze J, Reber-Funk C, Korb J (2003) Isolation and characterization of six microsatellite loci in the drywood termite Cryptotermes secundus (Kalotermitidae). Mol Ecol Notes 3:355–357

    Article  CAS  Google Scholar 

  • Garcia LV (2004) Escaping the Bonferroni iron claw in ecological studies. Oikos 105:657–663

    Article  Google Scholar 

  • Goodisman MAD, Crozier RH (2002) Population and colony genetic structure of the primitive termite Mastotermes darwiniensis. Evolution 56:70–83

    PubMed  Google Scholar 

  • Griffin AS, West SA (2003) Kin discrimination and the benefit of helping in cooperatively breeding vertebrates. Science 302:634–636

    Article  PubMed  CAS  Google Scholar 

  • Gross MR (1996) Alternative reproductive strategies and tactics: diversity within sexes. Trends Ecol Evol 11:92–98

    Article  Google Scholar 

  • Hammond RL, Bruford MW, Bourke AFG (2003) Male parentage does not vary with colony kin structure in a multiple-queen ant. J Evol Biol 16:446–455

    Article  PubMed  CAS  Google Scholar 

  • Hoenig JM, Heisey DM (2001) The abuse of power: the pervasive fallacy of power calculations for data analysis. Am Stat 55:19–24

    Article  Google Scholar 

  • Husseneder C, Brandl R, Epplen J, Kaib M (1999) Within colony relatedness in a termite species: genetic roads to eusociality? Behaviour 136:1045–1063

    Article  Google Scholar 

  • Keller L (1997) Indiscriminate altruism: unduly nice parents and siblings. Trends Ecol Evol 12:99–103

    Article  Google Scholar 

  • Korb J (2005) Regulation of sexual development in termites: mutilation, pheromonal manipulation or honest signal. Naturwissenschaften 92:45–49

    Article  PubMed  CAS  Google Scholar 

  • Korb J (2006) Limited food induces nepotism in drywood termites. Biol Lett 2:364–366

    Article  PubMed  Google Scholar 

  • Korb J (2007) Termites: an alternative road to eusociality and the importance of group benefits in social insects. In: Gadau J, Fewell J (eds) Organization of insect societies. Harvard University Press, Harvard (in press)

    Google Scholar 

  • Korb J, Heinze J (2004) Multilevel selection and social evolution of insect societies. Naturwissenschaften 91:291–304

    Article  PubMed  CAS  Google Scholar 

  • Korb J, Katrantzis S (2004) Influence of environmental conditions on the expression of the worker phenotype in a lower termite: implications for the evolution of workers in termites. Evol Dev 6:342–352

    Article  PubMed  Google Scholar 

  • Korb J, Lenz M (2004) Reproductive decision-making in the termite Cryptotermes secundus (Kalotermitidae) under variable food conditions. Behav Ecol 15:390–395

    Article  Google Scholar 

  • Korb J, Schmidinger S (2004) Help or disperse? Cooperation in termites influenced by food conditions. Behav Ecol Sociobiol 56:89–95

    Article  Google Scholar 

  • Lenz M (1994) Food resources, colony growth and caste development in wood-feeding termites. In: Hunt J, Nalepa CA (eds) Nourishment and evolution in insect societies. Westview, Boulder

    Google Scholar 

  • Myles TG (1988) Resource inheritance in social evolution from termites to man. In: Slobodchikoff CN (ed) The ecology of social behavior. Academic, New York

    Google Scholar 

  • Norusis M (1993) SPSS for Window. Base systems. SPSS Inc., Chicago

    Google Scholar 

  • Nutting WL (1969) Flight and colony foundation. In: Krishna K, Weesner F (eds) Biology of termites I. Academic, New York

    Google Scholar 

  • Page RE, Robinson GE, Fondrk MK (1989) Genetic specialists, kin recognition and nepotism in honey-bee colonies. Nature 338:576–579

    Article  Google Scholar 

  • Queller DC (1993) Genetic relatedness in viscous populations. Evol Ecol 8:70–73

    Article  Google Scholar 

  • Ratnieks FLW, Reeve HK (1992) Conflict in single-queen Hymenopteran societies: the structure of conflict and processes that reduce conflict in advanced eusocial species. J Theor Biol 158:33–65

    Article  Google Scholar 

  • Reeve HK (1998) Game theory, reproductive skew, and nepotism. In: Dugatkin RH (ed) Theory and animal behaviour. Oxford University Press, Oxford

    Google Scholar 

  • Roisin Y (2000) Diversity and evolution of caste patterns. In: Abe T, Bignell D, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Roux E (2004) Evolution of eusociality and the soldier caste: a case study in a drywood termite. Dissertation, University of Regensburg

    Google Scholar 

  • Shellman-Reeve JS (1997) The spectrum of eusociality in termites. In: Choe J, Crespi B (eds) The evolution of social behaviour in insects and arachnids. Cambridge University Press, Cambridge

    Google Scholar 

  • Shellman-Reeve JS (2001) Genetic relatedness and partner preference in a monogamous, wood-dwelling termite. Anim Behav 61:869–876

    Article  Google Scholar 

  • Thompson G, Hebert P (1998) Population genetic structure of the neotropical termite Nasutitermes nigriceps (Isoptera: Termitidae). Heredity 8:48–55

    Article  Google Scholar 

  • Thorne BL (1997) Evolution of eusociality in termites. Annu Rev Ecol Syst 28:27–54

    Article  Google Scholar 

  • Thorne BL, Traniello J (2003) Comparative social biology of basal taxa of ants and termites. Annu Rev Entomol 48:283–306

    Article  PubMed  CAS  Google Scholar 

  • Thorne BL, Breisch NL, Muscedere ML (2003) Evolution of eusociality and the soldier caste in termites: influence of intraspecific competition and accelerated inheritance. Proc Natl Acad Sci USA 100:12808–12813

    Article  PubMed  CAS  Google Scholar 

  • Vargo EL (2003) Hierarchical analysis of colony and population genetic structure of the eastern subterranean termite, Reticulitermes flavipes, using two classes of molecular markers. Evolution 57:2805–2818

    PubMed  CAS  Google Scholar 

  • West SA, Pen I, Griffin AS (2002) Cooperation and competition between relatives. Science 296:72–75

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank S. Schmidinger, S. Kirschner for help with data collection, K. Boomsma and two anonymous referees for helpful comments on the manuscript, and M. Lenz for substantial support in Australia. The project was supported by the German Science Foundation (KO 1895/2-1). Environment Australia gave permission to export the termites (export permit no. PWS P20011508). The experiments performed comply with the current laws in Australia and Germany where the experiments were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Korb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korb, J., Schneider, K. Does kin structure explain the occurrence of workers in a lower termite?. Evol Ecol 21, 817–828 (2007). https://doi.org/10.1007/s10682-006-9153-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-006-9153-5

Keywords

Navigation