Advertisement

Evolutionary Ecology

, Volume 20, Issue 4, pp 345–363 | Cite as

Microgeographic variation in metabolic rate and energy storage of brown trout: countergradient selection or thermal sensitivity?

  • David Álvarez
  • José M. Cano
  • Alfredo G. Nicieza
Research article

Abstract

We examined the influence of habitat size, growth opportunity, and the thermal conditions experienced during early development on the standard metabolic rate (SMR) of juvenile brown trout (Salmo trutta) from six natural populations to contrast the hypothesis of countergradient selection in metabolic rate. The study populations differed significantly in SMR. Population means for SMR changed in response to the temperature experienced during the yolk-absorption stage, when the risk of oxygen deficit increases and the vulnerability to hypoxia is highest. We also found a strong negative correlation between the temperature experienced during the first 2 months after yolk resorption and SMR, which supports the hypothesis of countergradient variation. Moreover, we detected a strong negative correlation between an index of growth opportunity and relative lipid content, suggesting that the risk of energy shortfall could be a major force in the evolution of storage strategies. Our results suggest that temperature can shape the evolution of metabolic rate during the yolk-absorptive stage or the first feeding stage, while energy storage levels may be more sensitive to thermal constraints acting on growth rates.

Keywords

countergradient variation habitat size metabolic rate Salmo trutta starvation risk thermal stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, J.D. 1995Stream Ecology: Structure and Function of Running WatersChapman and HallNYGoogle Scholar
  2. Álvarez, D., Nicieza, A.G. 2005Is metabolic rate a reliable predictor of growth and survival of brown trout (Salmo trutta) in the wild?Can. J. Fish. Aquat. Sci.62643649CrossRefGoogle Scholar
  3. Ayres, M.P., Scriber, J.M. 1994Local adaptation to regional climates in Papilio canadensis (Lepidoptera: Papilionidae)Ecol. Monogr.64465482CrossRefGoogle Scholar
  4. Billerbeck, J.M., Schultz, E.T., Conover, D. 2000Adaptive variation in energy acquisition and allocation among latitudinal populations of the Atlantic silversideOecologia122210219CrossRefGoogle Scholar
  5. Calow, P. 1977Ecology, evolution and energetics: a study in metabolic adaptationAdv. Ecol. Res.10162CrossRefGoogle Scholar
  6. Clarke, A. 1993Seasonal acclimatization and latitudinal compensation in metabolism: do they exist?Funct. Ecol.7139149CrossRefGoogle Scholar
  7. Conover, D.O., Schultz, E.T. 1995Phenotypic similarity and the evolutionary significance of countergradient variationTrends Ecol. Evol.10248252CrossRefGoogle Scholar
  8. Cossins, A.R., Bowler, K. 1987Temperature Biology of AnimalsChapman and HallNYGoogle Scholar
  9. Crill, W.D., Huey, R.B., Gilchrist, G.W. 1996Within- and between-generation effects of temperature on the morphology and physiology of Drosophila melanogaster Evolution5012051218CrossRefGoogle Scholar
  10. Cutts, C.J., Adams, C.E., Campbell, A. 2001Stability of physiological and behavioural determinants of performance in Arctic char (Salvelinus alpinus)Can. J. Fish. Aquat. Sci.58961968CrossRefGoogle Scholar
  11. Djawdan, M., Rose, M.R., Bradley, T.J. 1997Does selection for stress resistance lower metabolic rate?Ecology78828837CrossRefGoogle Scholar
  12. Dobush, G.R., Ankney, C.D., Krementz, D.G. 1985The effect of apparatus, extraction time, and solvent type on lipid extractions of snow geeseCan. J. Zool.6319171920Google Scholar
  13. Drud Jordan, A., Jungersen, A., Steffensen, J.F. 2001Oxygen consumption of East Siberian cod: no support for the metabolic cold adaptation theoryJ. Fish Biol.59818823CrossRefGoogle Scholar
  14. Elliott, J.M. 1972Rates of gastric evaluation in brown trout, Salmo trutta LFresh. Biol.2118CrossRefGoogle Scholar
  15. Elliott, J.M. 1994Quantitative Ecology and the Brown TroutOxford University PressOxfordGoogle Scholar
  16. Elliott, J.M., Hurley, M.A., Elliott, J.A. 1997Variable effects of droughts on the density of a sea-trout Salmo trutta population over 30 yearsJ. Appl. Ecol.3412291238CrossRefGoogle Scholar
  17. Farrell, A.P. 2002Cardiorespiratory performance in salmonids during exercise at high temperature: insights into cardiovascular design limitations in fishesComp. Biochem. Physiol. A. Mol. Integr. Physiol.132797810PubMedCrossRefGoogle Scholar
  18. Garland, T.,Jr., Adolph, S.C. 1991Physiological differentiation of vertebrate populationsAnn. Rev. Ecol. Syst.22193228CrossRefGoogle Scholar
  19. Harshman, L.G., Hoffmann, A.A., Clark, A.G. 1999Selection for starvation resistance in Drosophila melanogaster: physiological correlates, enzyme activities and multiple stress responsesJ. Evol. Biol.12370379CrossRefGoogle Scholar
  20. Hoffmann, A.A., Parsons, P.A. 1997Extreme Environmental Change and EvolutionCambridge University PressCambridgeGoogle Scholar
  21. Huitema, B.E. 1980The Analysis of Covariance and AlternativesWileyNYGoogle Scholar
  22. Hurst, T.P., Conover, D.O. 1998Winter mortality of young-of-the-year Hudson River striped bass (Morone saxatilis): size-dependent patterns and effects on recruitmentCan. J. Fish. Aquat. Sci.5511221130CrossRefGoogle Scholar
  23. Jasienski, M., Bazzaz, F.A. 1999The fallacy of ratios and the testability of models in biologyOikos84321326Google Scholar
  24. Kamler, E. 1992Early Life History of Fish: an Energetics ApproachChapman and HallNYGoogle Scholar
  25. Kawall, H.G., Torres, J.J., Sidell, B.D., Somero, G.N. 2002Metabolic cold adaptation in Antarctic fishes: evidence from enzymatic activities of brainMar. Biol.140279286CrossRefGoogle Scholar
  26. Kingsolver, J.G., Watt, W.B. 1983Thermoregulatory strategies in Colias butterflies: thermal stress and the limits to adaptation in temporally varying environmentsAm. Nat.1213255CrossRefGoogle Scholar
  27. Laugen, A.T., Laurila, A., Räsänen, K., Merilä, J. 2003Latitudinal countergradient variation in the common frog (Rana temporaria) developmental rates: evidence for local adaptationJ.␣Evol. Biol.16110CrossRefGoogle Scholar
  28. Levins, R. 1969Thermal acclimation and heat resistance in Drosophila speciesAm. Nat.103483499CrossRefGoogle Scholar
  29. Metcalfe, N.B., Thorpe, J.E. 1990Determinants of geographical variation in the age of seaward-migrating salmon, Salmo salar J. Anim. Ecol.59135145CrossRefGoogle Scholar
  30. Metcalfe, N.B., Taylor, A.C., Thorpe, J.E. 1995Metabolic rate, social status and life-history strategies in Atlantic salmonAnim. Behav.49431436CrossRefGoogle Scholar
  31. Mueller, P., Diamond, J. 2001Metabolic rate and environmental productivity: well-provisioned animals evolved to run and idle fastProc. Nat. Acad. Sci. USA981255012554PubMedCrossRefGoogle Scholar
  32. Nicieza, A.G., Braña, F., Toledo, M.M. 1991Development of length-bimodality and smolting in wild stocks of Atlantic salmon, Salmo salar L., under different growth conditionsJ. Fish. Biol.38509523CrossRefGoogle Scholar
  33. Nicieza, A.G., Reiriz, L., Braña, F. 1994Variation in digestive performance between geographically disjunct populations of Atlantic salmon: countergradient in passage time and digestion rateOecologia99243251CrossRefGoogle Scholar
  34. O’Connor, K.I., Taylor, A.C., Metcalfe, N.B. 2000The stability of standard metabolic rate during a period of food deprivation in juvenile Atlantic salmonJ. Fish Biol.574151CrossRefGoogle Scholar
  35. Ojanguren, A.F., Reyes-Gavilán, F.G., Braña, F. 2001Thermal sensitivity of growth, food intake and activity of juvenile troutJ. Therm. Biol.26165170PubMedCrossRefGoogle Scholar
  36. Packard, G.C., Boardman, T.J. 1988The misuse of ratios, indices, and percentages in ecophysiological researchPhysiol. Zool.6119Google Scholar
  37. Peters, R.H. 1983The Ecological Implications of Body SizeCambridge University PressCambridgeGoogle Scholar
  38. Post, J.R., Evans, D.O. 1989Size-dependent overwinter mortality of young-of-the-year yellow perch (Perca flavescens): laboratory, in situ enclosure, and field experimentsCan. J. Fish. Aquat. Sci.4619581968Google Scholar
  39. Post, J.R., Parkinson, E.A. 2001Energy allocation strategy in young fish: allometry and survivalEcology8210401051CrossRefGoogle Scholar
  40. Priede, I.G. 1985Metabolic scope in fishesTytler, P.Calow, P. eds. Fish Energetics: New PerspectivesCroom HelmKent, UK3363Google Scholar
  41. Rombough, P.J. 1988Respiratory gas exchange, aerobic metabolism, and effects of hypoxia during early lifeHoar, W.S.Randall, D.J. eds. Fish PhysiologyAcademic PressNY59161Google Scholar
  42. Schultz, E.T., Conover, D.O. 1997Latitudinal differences in somatic energy storage: adaptive responses to seasonality in an estuarine fish (Atherinidae: Menidia menidia)Oecologia109516529CrossRefGoogle Scholar
  43. Siefert, L.E., Carlson, A.R., Herman, L.J. 1974Effects of reduced oxygen concentrations on the early life stages of mountain whitefish, smallmouth bass, and white bassProgr. Fish-Cult.36186190Google Scholar
  44. Steffensen, J.F. 1989Some errors in respirometry of aquatic breathers: how to avoid and correct for themFish. Physiol. Biochem.64959CrossRefGoogle Scholar
  45. Steffensen, J.F. 2002Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artifact? Artifact!Comp. Biochem. Physiol.132789795CrossRefGoogle Scholar
  46. Tåning, Å.V. 1952Experimental study of meristic characters in fishesBiol. Rev. Camb. Phil. Soc.27169173Google Scholar
  47. Vernier, J.-M. 1969Table chronologique du développement embryonarie de la truite arc-en-ciel, Salmo gairdneri Rich. 1836Ann. d’Embryol. Morphog.2495520Google Scholar
  48. Wigley, T.M.L. 1985Impact of extreme eventsNature316106107Google Scholar
  49. Wohlschlag, D.E. 1960Metabolism of an Antarctic fish and the phenomenon of cold adaptationEcology41287292CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • David Álvarez
    • 1
    • 2
  • José M. Cano
    • 1
    • 3
  • Alfredo G. Nicieza
    • 1
    • 3
  1. 1.Ecology Unit, Department of Biology of Organisms and SystemsUniversity of OviedoOviedoSpain
  2. 2.Department of Functional BiologyUniversity of OviedoOviedoSpain
  3. 3.Department of Bio- and Environmental Sciences, Ecological Genetics Research UnitUniversity of HelsinkiHelsinkiFinland

Personalised recommendations