Evolutionary Ecology

, Volume 20, Issue 2, pp 143–158 | Cite as

Trade-off between larval development rate and Post-metamorphic Traits in the Frog Rana latastei

  • Gentile Francesco Ficetola
  • Fiorenza De Bernardi
Research Article


Development rate early in the ontogeny is believed to correlate positively with fitness. Geographic variation in intrinsic development rate suggests the existence of trade-offs between development rate and other fitness related traits. We investigated whether these trade-offs exist between intrinsic larval development rate and post-metamorphic traits in an organism with a complex life cycle. In laboratory, we measured if the tadpoles of the frog Rana latastei with fast intrinsic development rate have a suboptimal post-metamorphic morphology, by comparing froglets from five populations. Then, we evaluated the relationship between age at metamorphosis, hindlimb length and jumping performance for frogs grown in nature in two populations. Under laboratory conditions, froglets with fast intrinsic development had shorter absolute and shorter size-adjusted tibiofibulas. We observed a strong, positive relationship between tibiofibula length and jumping performance. In nature, froglets from the last metamorphosing population had longer absolute and size-adjusted tibiofibulas, and were able to jump further. The cost of fast development could be the shorter legs of early metamorphosing frogs, and their poor jumping performance. Thus, a fast intrinsic development rate may not always be positively related to lifetime fitness, since delayed effects of larval development persist also across life history stages.


allometry complex life cycles developmental trade-offs jumping performance local adaptation locomotor performance metamorphosis optimisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altwegg, R., Reyer, H.-U. 2003Patterns of natural selection on size at metamorphosis in water frogsEvolution57872882PubMedGoogle Scholar
  2. Alvarez, D., Nicieza, A.G. 2002Effects of induced variation in anuran larval development on postmetamorphic energy reserves and locomotionOecologia131186195Google Scholar
  3. Arendt, J.D. 1997Adaptive intrinsic growth rates: an integration across taxaQ. Rev. Biol.72149177CrossRefGoogle Scholar
  4. Arendt, J.D. 2003Reduced burst speed is a cost of rapid growth in anuran tadpoles: problems of autocorrelation and inferences about growth ratesFunct. Ecol.17328334CrossRefGoogle Scholar
  5. Arendt, J.D., Wilson, B.A., Stark, E. 2001Scale strength as a cost of rapid growth in sunfishOikos9395100CrossRefGoogle Scholar
  6. Banks, B., Beebee, T.J.C. 1988Reproductive success of Natterjack Toad Bufo calamita in two contrasting habitatsJ. Anim. Ecol.57475492Google Scholar
  7. Berven, K.A. 1982The genetic basis of altitudinal variation in the wood frog Rana sylvatica. II. An experimental analysis of larval developmentOecologia52360369CrossRefGoogle Scholar
  8. Berven, K.A. 1982The genetic basis of altitudinal variation in the wood frog Rana sylvatica. I. An experimental analysis of life history traitsEvolution36962983Google Scholar
  9. Berven, K.A., Gill, D.E., Smith-Gill, S.J. 1979Countergradient selection in the green frog, Rana clamitansEvolution33609623Google Scholar
  10. Billerbeck, J.M., Lankford, T.E., Conover, D.O. 2001Evolution of intrinsic growth rate and energy acquisition rates. I. Trade-offs with swimming performance in Menidia menidiaEvolution5518631872PubMedGoogle Scholar
  11. Blouin, M.S., Loeb, M.L.G. 1991Effects of environmentally induced development-rate variation on head and limb morphology in the green tree frog, Hyla cinereaAm. Nat.138717728CrossRefGoogle Scholar
  12. Blouin, M.S., Brown, S.T. 2001Effects of temperature-induced variation in anuran larval growth rate on head width and leg length at metamorphosisOecologia125358361Google Scholar
  13. Bowerman, B.L., O’Connell, R.T. 1990Linear Statistical ModelsPWS-KentBostonGoogle Scholar
  14. Conover, D.O., Schultz, E.T. 1995Phenotipic similarity and the evolutionary significance of countergradient variationTrends Ecol. Evol.10248252CrossRefGoogle Scholar
  15. Block, M., Stoks, R. 2005Fitness effects from egg to reproduction: bridging the life history transitionEcology86185197Google Scholar
  16. Emerson, S.B. 1978Allometry and jumping in frogs: helping the twain to meetEvolution32551564Google Scholar
  17. Emerson, S.B. 1986Heterocrony and frogs: the relationship of a life history trait to morphological formAm. Nat.127167183CrossRefGoogle Scholar
  18. Ficetola, G.F., Bernardi, F. 2004Amphibians in an human-dominated landscape: the community structure is related to habitat features and isolationBiol. Conserv.119219230Google Scholar
  19. Ficetola, G.F., Bernardi, F. 2005Supplementation or in situ conservation? Evidence of local adaptation in the Italian agile frog Rana latastei and consequences for the management of populationsAnim. Conserv.83340CrossRefGoogle Scholar
  20. Fischer, K., Zeilstra, I., Hetz, S.K., Fielder, K. 2004Physiological costs of growing fast: does accelerated growth reduce pay-off in adult fitness?Evol. Ecol.18343353Google Scholar
  21. Garner, T.W.J., Angelone, S., Pearman, P.B. 2004Genetic diversity across a vertebrate species’ range: a test of the central–peripheral hypothesisMol. Ecol.1310471053CrossRefPubMedGoogle Scholar
  22. Gosner, K.L. 1960A simplified table for staging Anuran embryos and larvae with notes on identificationHerpetologica16183190Google Scholar
  23. Henein, J.T., Hammond, G. 1997Antipredator behaviors of newly metamorphosed green frogs (Rana clamitans) and leopard frogs (R. pipiens) in encounters with eastern garter snakes (Thamnophis s. sirtalis)Am. Midl. Nat.137136144Google Scholar
  24. Lankford, T.E., Billerbeck, J.M., Conover, D.O. 2001Evolution of intrinsic growth rate and energy acquisition rates. II. Trade-offs with vulnerability to predation in Menidia menidiaEvolution5518731881PubMedGoogle Scholar
  25. Laugen, A.T., Laurila, A., Merila, J. 2003Latitudinal and temperature-dependent variation in embryonic development and growth in Rana temporariaOecologia135548554PubMedGoogle Scholar
  26. Loman, J. 2002Temperature, genetic and hydroperiod effects on metamorphosis of brown frog Rana arvalis and R. temporaria in the fieldJ. Zool. (London)258115129Google Scholar
  27. Moran, N.A. 1994Adaptation and constraint in the complex life cycle of animalsAnnu. Rev. Ecol. Syst.25573600CrossRefGoogle Scholar
  28. Morgan, I.J., Metcalfe, N.B. 2001Deferred costs of compensatory growth after autumnal food shortage in juvenile salmonP. Roy. Soc. Lond. B: Biol.268295301Google Scholar
  29. Mousseau, T.A., Fox, C.W. and eds, (1998) Maternal Effects as Adaptations. Oxford University Press, New York.Google Scholar
  30. Newman, R.A. 1988Adaptive plasticity in development of Scaphiopus couchi tadpoles in desert pondsEvolution42774783Google Scholar
  31. Newman, R.A. 1988Genetic variation for larval anuran (Scaphiopus couchi) development time in an uncertain environmentEvolution42763773Google Scholar
  32. Pechenik, J.A., Wendt, D.E., Jarrett, J.N. 1998Metamorphosis is not a new beginning: larval experience influences juvenile performanceBioscience48901910Google Scholar
  33. Pozzi, A. 1980Ecologia di Rana latastei BoulengerAtti. Soc. Ital. Sci. Nat. Museo Civ. Stor. Nat. Milano121221274Google Scholar
  34. Relyea, R.A. 2001The lasting effects of adaptive plasticity: predator-induced tadpoles become long-legged frogsEcology8219471955Google Scholar
  35. Relyea, R.A., Hoverman, J.T. 2003The impact of larval predators and competitors on the morphology and fitness of juvenile treefrogsOecologia134596604PubMedGoogle Scholar
  36. Rowe, G., Beebee, T.J.C. 2001Fitness and microsatellite diversity estimates were not correlated in two outbred anuran populationsHeredity87558565PubMedGoogle Scholar
  37. Rowe, G., Beebee, T.J.C., Burke, T. 1999Microsatellite heterozygosity, fitness and demography in natterjack toads Bufo calamitaAnim. Conserv.28592CrossRefGoogle Scholar
  38. Satterthwaite, F.E. 1946An approximate distribution of estimates of variance componentsBiometrics2110114Google Scholar
  39. Schmidt, B.R., Buskirk, J.V. 2005A comparative analysis of predator-induced plasticity in larval Triturus newtsJ. Evol. Biol.18415425CrossRefPubMedGoogle Scholar
  40. Scriber, J.M., Slansky, F.,Jr. 1981The nutritional ecology of immature insectsAnnu. Rev. Entomol.26183211CrossRefGoogle Scholar
  41. Semlitsch, R.D. 2002Critical elements for biologically based recovery plans of aquatic-breeding amphibiansConserv. Biol.16619629CrossRefGoogle Scholar
  42. Semlitsch, R.D., Pickle, J., Parris, M.J., Sage, R.D. 1999Jumping performance and short-term repeatability of newly metamorphosed hybrid and parental leopard frogs (Rana sphenocephala and Rana blairi)Can. J. Zool.77748754CrossRefGoogle Scholar
  43. Skelly, D.K. 2004Microgeographic countergradient variation in the wood frog, Rana sylvaticaEvolution58160165PubMedGoogle Scholar
  44. Smith-Gill, S.J. 1983Developmental plasticity: developmental conversion versus phenotypic modulationAm. Zool.234755Google Scholar
  45. Sokal, R.R., Rohlf, F.J. 1995BiometryW.H. Freeman and CompanyNew YorkGoogle Scholar
  46. Stoks, R., Block, M., Meutter, F., Johanson, F. 2005Predation cost of rapid growth: behavioural coupling and physiological decouplingJ. Anim. Ecol.74708715CrossRefGoogle Scholar
  47. Travis, J., Keen, W.H., Juilianna, J. 1985The role of relative body size in a predator–prey relationship between dragonfly naiads and larval anuransOikos455965Google Scholar
  48. Buskirk, J.V., Arioli, M. 2005Habitat specialization and adaptive phenotypic divergence of anuran populationsJ. Evol. Biol.18596608PubMedGoogle Scholar
  49. Buskirk, J.V., Saxer, G. 2001Delayed costs of an induced defense in tadpoles? Morphology, hopping, and development rate at metamorphosisEvolution55821829PubMedGoogle Scholar
  50. Vonesh, J.R. 2005Sequential predator effects across three life stages of the African tree frog, Hyperolius spingularisOecologia143280289CrossRefPubMedGoogle Scholar
  51. Wassersug, R.J., Sperry, D.G. 1977The relationship of locomotion to differential predation rate on Pseudacris triseriata (Anura: Hylidae)Ecology58830839Google Scholar
  52. Watkins, T.B. 2001A quantitative genetic test of adaptive decoupling across metamorphosis for locomotor and life-history traits in the pacific tree grog, Hyla regillaEvolution5516681677PubMedGoogle Scholar
  53. Wilbur, H.M., Collins, J.P. 1973Ecological aspects of amphibian metamorphosisScience18213051314Google Scholar
  54. Zug, G.R. 1972Anuran locomotion: structure and function. I. Preliminary observations on relation between jumping and osteometrics of appendicular and postaxial skeletonCopeia1972613624Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Gentile Francesco Ficetola
    • 1
  • Fiorenza De Bernardi
    • 1
  1. 1.Dipartimento di BiologiaUniversità degli Studi di MilanoMilanItaly

Personalised recommendations