Evolutionary Ecology

, Volume 18, Issue 5–6, pp 563–584 | Cite as

Optimum reproduction and dispersal strategies of a clonal plant in a metapopulation: a simulation study with Hieracium pilosella

  • Jürg Stöcklin
  • Eckart Winkler
Research Article


Clonal spread is favoured in many plants at the expense of seed production in order to expand rapidly into open habitats or to occupy space by forming dense patches. However, for the dynamics of a population in a patchy landscape seed dispersal remains important even for clonal plants. We used a spatially explicit individual-based metapopulation model to examine the consequences of two trade-offs in Hieracium pilosella L: first, between vegetative and sexual reproduction, and second, between short and far-distance dispersal of seeds. Our main question was, what are the environmental conditions that cause a mixed strategy of vegetative and sexual reproduction to be optimal. The model was parameterised with field data on local population dynamics of H. pilosella. Patch dynamics were given firstly by disturbance events that opened patches in a matrix of a clonal grass that were colonisable for H. pilosella, and secondly by the gradual disappearance of H. pilosella patches due to the expanding grass. Simulations revealed opposing selection pressures on traits determined by the two trade-offs. Vegetative reproduction is favoured by local dynamics, i.e. the need for maintenance and expansion of established populations, whereas seed production is favoured by the necessity to colonise empty habitats. Similar pressures act on the proportion of seeds dispersed over short and far distances. Optimum reproductive and dispersal strategies depended on habitat quality (determined by seedling establishment probability), the fraction of dispersed seeds, and the fraction of seeds lost on unsuitable ground. Under habitat conditions supporting moderate to low seedling establishment, between 20% and 40% of reproductive effort in H. pilosella should be devoted to sexual reproduction with at least 10% of the seeds dispersed over distances suitable to attain empty patches. We conclude that in a spatially heterogeneous landscape sexual seed production in a clonal plant is advantageous even at the expense of local vegetative growth.


dispersal Hieracium pilosella metapopulation allocation trade-off simulation model reproduction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bazzaz, F.A. 1996Plants in Changing Environments: Linking Physiological, Population, and Community EcologyUniversity PressCambridgeGoogle Scholar
  2. Bishop, G.F., Davy, A.J. 1985Density, and the commitment of apical meristems to clonal growth and reproduction in Hieracium pilosella.Oecologia66417422CrossRefGoogle Scholar
  3. Bishop, G.F., Davy, A.J. 1994Biological flora of the British Isles. Hieracium pilosella (Pilosella officinarum F Schultz & Schultz-Bip.)J. Ecol.82195210Google Scholar
  4. Bliss, L.C. 1971Arctic and alpine plant life cycles. AnnRev. Ecol. Syst.2405438CrossRefGoogle Scholar
  5. Ellner, S.P., Fussmann, G. 2003Effects of successional dynamics on metapopulation persistence.Ecology84882889Google Scholar
  6. Eriksson, O. 1992Evolution of seed dispersal and recruitment in clonal plants.Oikos63439453Google Scholar
  7. Eriksson, O. 1996Regional dynamics of plants: a review of evidence for remnant, source-sink and metapopulations.Oikos77248258Google Scholar
  8. Eriksson, O. 1997Clonal life histories and the evolution of seed recruitmentKroon, H.Groenendael, J. eds. The Ecology and Evolution of Clonal PlantsBackhuys Publ.Leiden211226Google Scholar
  9. Frank, K., Wissel, Ch. 1998Spatial aspects of metapopulation survival – from model results to rules of thumb for landscape management.Landscape Ecol.13363379CrossRefGoogle Scholar
  10. Freckleton, R.P., Watkinson, A.R. 2002Large-scale spatial dynamics of plants: metapopulations, regional ensembles and patchy populations.J. Ecol90419434CrossRefGoogle Scholar
  11. Gray, A.J.Crawley, M.J.Edwards, P.J. eds. 1987Colonisation, Succession and StabilityBlackwellOxfordGoogle Scholar
  12. Hanski I. (1999) Metapopulation Ecology. Oxford University PressGoogle Scholar
  13. Hanski, I., Moilanen, A., Gyllenberg, M. 1996Minimum viable metapopulation size.Am Nat.147527541CrossRefGoogle Scholar
  14. Harada, Y. 1999Short- vs Long-range disperser: the evolutionary stable allocation in a lattice-structured habitatJ. Theor. Biol.201171187CrossRefPubMedGoogle Scholar
  15. Harada, Y., Iwasa, Y. 1994Lattice population dynamics for plants with dispersing seeds and vegetative propagation. ResPopul. Ecol.36237249Google Scholar
  16. Harrison, S. 1994Metapopulations and conservationEdwards, P.J.May, R.M.Webb, N.R. eds. Large Scale Ecology and Conservation BiologyBlackwellOxford UK111128Google Scholar
  17. Hartmann, H. 1955Studien über die vegetative Fortpflanzung in den HochalpenJahresber Naturf. Ges. Graubündens863168Google Scholar
  18. Higgins, S.I., Cain, M.L. 2002Spatially realistic plant metapopulation models and the colonization-competition trade-off.J. Ecol90616626CrossRefGoogle Scholar
  19. Husband, B.C., Barrett, S.C.H. 1996A metapopulation perspective in plant population biologyJ. Ecol84461469Google Scholar
  20. Johnson, M.P. 2000The influence of patch demographies on metapopulations, with particular reference to successional landscapes.Oikos886774Google Scholar
  21. JohstK. Brandl, R., Eber, S. 2002Metapopulation persistence in dynamic landscapes: the role of dispersal distance.Oikos98263270Google Scholar
  22. Klimeš, L., Klimešova’, J., Hendriks, R., Groenendael, J. 1997Clonal plant architecture: a comparative analysis of form and functionKroon, H.Groenendael, J. eds. The Ecology and Evolution of Clonal PlantsBackhuys Publ.Leiden129Google Scholar
  23. Law, R., Cook, R.E.D., Manlove, R.J. 1983The ecology of flower and bulbil production in Polygonum viviparum.Nordic J Bot.3559565Google Scholar
  24. Levins, R. 1969Some demographic and genetic consequences of environmental heterogeneity for biological controlBull. Entomol. Soc. Am.15237240Google Scholar
  25. McPeek, M.A., Holt, R.D. 1992The evolution of dispersal in spatially and temporally varying environmentsAm. Nat.14010101027Google Scholar
  26. Metz, J.A.J., Nisbet, R.M., Geritz, S.A.H. 1992How should we define “fitness” for general ecological scenarios?Trends Ecol. Evol.7198202Google Scholar
  27. Obeso, R.J 2002The cost of reproduction in plantsNew Phytol.155321348Google Scholar
  28. Olejniczak, P. 2001Evolutionary stable allocation to vegetative and sexual reproduction in plantsOikos95156160Google Scholar
  29. Olejniczak, P. 2003Optimal allocation to vegetative and sexual reproduction in plants: the effect of ramet densityEvol. Ecol.17265275Google Scholar
  30. Olivieri, I., Gouyon, P. 1997Evolution of migration rate and other traitsHanski, I.A.Gilpin, M.E. eds. Metapopulation Biology: Ecology, Genetics, and EvolutionAcademic PressSan Diego293324Google Scholar
  31. Olivieri, I., Michalakis, Y., Gouyon, P. 1995Metapopulation genetics and the evolution of dispersalAm. Nat.146202227Google Scholar
  32. Piquot, Y., Petit, D., Valero, M., Cuguen, J., Laguerie, P., Vernet, P. 1998Variation in sexual and asexual reproduction among young and old populations of the perennial macrophyte Sparganium erectumOikos82139148Google Scholar
  33. Pulliam, H.R. 1988Sources, sinks and population regulationAm. Nat.132652661Google Scholar
  34. Reekie, E.G. 1999Resource allocation, trade-offs, and reproductive effort in plantsVuorisalo, T.O.Mutikainen, P.K. eds. Life History Evolution in PlantsKluwer Academic Publ.Dordrecht173193Google Scholar
  35. Reekie, E.G., Budge, S., Baltzer, J.L. 2002The shape of the trade-off function between reproduction and future performance in Plantago major and Plantago rugeliiCan. J. Bot.80140150Google Scholar
  36. Sakai, S. 1995Optimal resource allocation to vegetative and sexual reproduction of a plant growing in a spatially varying environmentJ. Theor. Biol.175271282Google Scholar
  37. Schmid, B. 1990Some ecological and evolutionary consequences of modular organization and clonal growth in plantsEvol. Trends Plants42534Google Scholar
  38. Stearns, S.C. 1977The evolution of life history traits A critique of the theory and a review of the dataAnn. Rev. Ecol. Syst.8145171Google Scholar
  39. Stearns, S.C. 1992The Evolution of Life HistoriesUniversity PressOxfordGoogle Scholar
  40. Sutherland, S., Vickery, R.K.,Jr. 1988Trade-offs between sexual and asexual reproduction in the genus MimulusOecologia76330335Google Scholar
  41. Tilman, D. 1985The resource ratio hypothesis of successionAm. Nat.125827852Google Scholar
  42. Travis, J.M.J., Dytham, C. 1998The evolution of dispersal in a metapopulation: a spatially explicit, individual-based modelProc. R. Soc. Lond. B2651723Google Scholar
  43. Tripathi, R.S., Harper, J.L. 1973The comparative biology of Agropyron repens (L.) Beauv., A. caninum (L.) Beauv. I. The growth of mixed populations established from tillers and from seedsJ. Ecol.61353368Google Scholar
  44. Groenendael, J., Kroon, H. 1990Clonal Growth in PlantsSPB Academic PublishingThe HagueGoogle Scholar
  45. Westley, L.C. 1993The effect of inflorescence bud removal on tuber production in Helianthus tuberosus L. (Asteraceae)Ecology7421362144Google Scholar
  46. Winkler, E., Fischer, M. 1999Two fitness measures for clonal plants and the importance of spatial aspectsPlant Ecol.141191199Google Scholar
  47. Winkler, E., Stöcklin, J. 2002Sexual and vegetative reproduction of Hieracium pilosella L. under competition and disturbance: a grid-based simulation modelAnn. Bot.89525536PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Botanical InstituteUniversity of BaselBaselSwitzerland
  2. 2.Department of Ecological ModellingUFZ Centre for Environmental ResearchLeipzigGermany

Personalised recommendations