Evolutionary Ecology

, Volume 18, Issue 4, pp 355–377 | Cite as

Testing for resistance of pelagic marine copepods to a toxic dinoflagellate

  • Sean P. Colin
  • Hans G. Dam
Research article


With few exceptions, the evolutionary consequences of harmful algae to grazers in aquatic systems remain unexplored. To examine both the ecological and evolutionary consequences of harmful algae on marine zooplankton, we used a two-fold approach. In the first approach, we examined the life history responses of two geographically separate Acartia hudsonica (Copepoda Calanoida) populations reared on diets containing the toxic dinoflagellate Alexandrium fundyense . One copepod population was from a region, Casco Bay, Maine, USA, that has experienced recurrent blooms of highly toxic Alexandrium spp. for decades; whereas the other population from Great Bay, New Jersey, USA, has never been exposed to toxic Alexandrium blooms. The life history experiment demonstrated that when the copepod population from New Jersey was reared on a diet containing toxic A. fundyense it exhibited lower somatic growth, size at maturity, egg production and survival than the same population reared on a diet without toxic A. fundyense . In contrast, toxic A. fundyense did not affect the life-history traits of the Maine population. Fitness, finite population growth rate (λ), was significantly reduced in the New Jersey population, but not in the Maine population. These results are consistent with the hypothesis of local adaptation (resistance) of the historically exposed copepod population to the toxic dinoflagellate. In the second approach, we further tested the resistance hypothesis with a laboratory genetic selection experiment with the naïve New Jersey copepod population exposed to a diet containing toxic A. fundyense. This experiment demonstrated that the ingestion and egg production of adult females of naïve copepods fed A. fundyense improved after three generations of being reared on a diet containing the toxic dinoflagellate. The results of the present study have important implications for understanding how grazer populations may respond to the introduction of toxic algae to their environment, and suggest that grazer resistance may be a feedback mechanism that may lead to bloom control.


Acartia hudsonica Alexandrium fundyense toxic algae life history biogeography rapid evolution life table 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D.M., Kulis, D.M., Doucette, G.J., Gallagher, J.C., Balech, E. 1994Biogeography of toxic dinoflagellates in the genus Alexandrium from the northeastern United States and CanadaMar. Biol.120467478Google Scholar
  2. Carlotti, F., Nival, S. 1991Individual variability of development in laboratory-reared Temora stylifera copepodites: consequences for the population dynamics and interpretation in the scope of growth and development rulesJ. Plankton Res.13801813Google Scholar
  3. Caswell, H. 1989Matrix Population ModelsSinauer Assoc. Inc.Sunderland, Massachussetts328Google Scholar
  4. Caudill, C.C., Bucklin, A. 2004Molecular phylogeography and evolutionary history of the estuarine copepod, Acartia tonsa, on the Northwest Atlantic coastHydrobiology51191102Google Scholar
  5. Cohn, M.S., Mahoney, J.B., Feers, E. 1988Occurrence of the dinoflagellate, Gonyaulax tamarensis, in New JerseyBull. NJ Acad. Sci.334549Google Scholar
  6. Colin S.P. (2002). Determination and characterization of resistance by populations of the copepod Acartia hudsonica to the toxic dinoflagellate Alexandrium sp. PhD Dissertation.Google Scholar
  7. Colin, S.P., Dam, H.G. 2002aLatitudinal differentiation in the effects of the toxic dinoflagellate Alexandrium spp on the feeding and reproduction of populations of the copepod Acartia hudsonica Harmful Algae1113125Google Scholar
  8. Colin, S.P., Dam, H.G. 2002bTesting for toxic effects of prey on zooplankton using sole versus mixed dietsLimnol. Oceanogr.4714301437CrossRefGoogle Scholar
  9. Colin, S.P., Dam, H.G. 2003Effects of the toxic dinoflagellate, Alexandrium fundyense, on historically naïve versus exposed populations of the copepod Acartia hudsonica : a test of mechanisms that reduce ingestion ratesMar. Ecol. Prog. Ser.2485565Google Scholar
  10. Conover, D.O., Schultz, E.T. 1995Phenotypic similarity and the evolutionary significance of countergradient variationTrends Ecol. Evol.10248252Google Scholar
  11. Ebert, T.A. 1999Plant and Animal Populations: Methods in DemographyAcademic PressNew York312Google Scholar
  12. Falconer, D.S. 1996Introduction to Quantitative GeneticsLongmanLondonGoogle Scholar
  13. Feinberg, L.R., Dam, H.G. 1998Effects of diets on dimensions, density and sinking rates of fecal pellets of the copepod Acartia tonsa Mar. Ecol. Prog. Ser.1758796Google Scholar
  14. Frangópulos, M., Guisande, C., Maneiro, I., Riveiro, I., Franco, J. 2000Short-term and long-term effects of the toxic dinoflagellate Alexandrium minutum on the copepod Acartia clausi Mar. Ecol. Prog. Ser.203161169Google Scholar
  15. Frost, B.W. 1972Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus Pacificus Limnol. Oceanogr.17805815CrossRefGoogle Scholar
  16. Gilbert, J.J. 1990Differential effects of Anabaena affinis on cladocerans and rotifers: mechanisms and implicationsEcology7117271740Google Scholar
  17. Guillard, R.R.L. 1975Culture of phytoplankton for feeding marine invertebratesW.L., SmithM.H., Chanley eds. Culture of Marine AnimalsPlenum PressNew York2660Google Scholar
  18. Hairston, N.G.,Jr., Lampert, W., Caceres, C.E., Holtmeier, C.L., Weider, L.J., Gaedkes, U., Fischer, J.M., Fox, J.A., Post, D.M. 1999Rapid evolution revealed by dormant eggsNature401446Google Scholar
  19. Hairston, N.G., Holtmeier, C.L., Lampert, W., Weider, L.J., Post, D.M., Fischer, J.M., Caceras, C.E., Fox, J.A., Gaedke, U. 2002Natural selection for grazer resistance to toxic cyanobacteria: evolution of phenotypic plasticity?Evolution5522032214Google Scholar
  20. Hallegraeff, G.M. 1993A review of harmful algal blooms and their apparent global increasePhycologia327999Google Scholar
  21. Hilbish, T.J. 1996Population genetics of marine species: the interaction of natural selection and historically differentiated populationsJ. Exp. Mar. Biol. Ecol.2006783Google Scholar
  22. Indrasena, W.M., Gill, T.A. 1999Thermal degradation of paralytic shellfish poisoning toxins in scallop digestive glandsFood Res. Int.324957Google Scholar
  23. Klerks, P.L., Levinton, J.S. 1989Rapid evolution of metal resistance in a benthic oligochaete inhabiting a metal-polluted siteBiol. Bull.176135141Google Scholar
  24. Lee, E.T. 1980Statistical Methods for Survival Data AnalysisLifetime Learning PublicationsBelmont, CAGoogle Scholar
  25. Liu, S., W.-X., Wang 2002Feeding and reproductive responses of marine copepods in South China to toxic and non-toxic phytoplanktonMar. Biol.140595603Google Scholar
  26. Lonsdale, D.J., Levinton, J.S. 1985Latitudinal differentation in copepod growth: an adaptation to temperatureEcology6613971407Google Scholar
  27. Lopez, M.D.G. 1996Effect of starvation on development and survivorship of naupliar Calanus pacificus (Brodsky). J. ExpMar. Biol. Ecol.203133146Google Scholar
  28. Luoma, S.N. 1977Detection of trace contaminant effects on aquatic ecosystemsJ. Fish. Res. Board Can.34436439Google Scholar
  29. Mauchline, J. 1998Advances in Marine Biology: The Biology of Calanoid CopepodsAcademic PressNew York355Google Scholar
  30. McAlice, B.J. 1981On the post-glacial history of Acartia tonsa (Copepoda: Calanoida) in the Gulf of Maine and the Gulf of StLawrence. Mar. Biol.64267272Google Scholar
  31. Oshima Y., Sugino K. and Yasumoto T. (1989). Latest advances in HPLC analysis of paralytic shellfish toxins. In Mycotoxins and Phycotoxins. Proceedings of the 7th International IUPAC Symposium Natori S. et al., (eds), editors, Amsterdam pp. 319–326.Google Scholar
  32. Peterson, W.T. 1986Development, growth, and survivorship of the copepod Calanus marshallae in the laboratoryMar. Ecol. Prog. Ser.296172Google Scholar
  33. Pyke, D.A., Thompson, J.N. 1986Statistical analysis of survival and removal rate experimentsEcology67240245Google Scholar
  34. Schantz, E.J. 1986Chemistry and biology of saxitoxin and related toxinsAnn. NY Acad. Sci.4791523PubMedGoogle Scholar
  35. Smayda, T.J. 1997Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the seaLimnol. Oceanogr.421137CrossRefGoogle Scholar
  36. Sokal, R.R., Rohlf, F.J. 1995Biometry2W.H. FreemanSan FranciscoGoogle Scholar
  37. Taylor, C.E. 1986Genetics and evolution of resistance to insecticidesBiol. J. Linn. Soc.27103112Google Scholar
  38. Teegarden, G.J., Cembella, A.D. 1996Grazing of toxic dinoflagellates, Alexandrium spp., by adult copepods of coastal Maine: Implications for the fate of paralytic shellfish toxins in marine food websJ. Exp. Mar. Biol. Ecol.196145176Google Scholar
  39. Teegarden, G.J., Campbell, R.G., Durbin, E.G. 2001Zooplankton feeding behavior and particle selection in natural plankton assemblages containing toxic Alexandrium spMar. Ecol. Prog. Ser.218213226Google Scholar
  40. Teegarden, G.J. 1999Copepod grazing selection and particle discrimination on the basis of PSP toxin contentMar. Ecol. Prog. Ser.181163176Google Scholar
  41. Tepper, B., Bradley, B.P. 1989Temporal changes in a natural population of copepodsBiol. Bull.1763240Google Scholar
  42. Travis, J. 1996The significance of geographical variation in species interactionsAm. Nat.148S1S8Google Scholar
  43. Tsuda, A. 1994Starvation tolerance of a planktonic marine copepod Pseudocalanus newmani FrostJ. Exp. Mar. Biol. Ecol.1818189Google Scholar
  44. Turner J.T., Tester P.A. and Hansen P.J. (1998). Interactions between toxic marine phytoplankton and metazoan and protistan grazers In M.R. Anderson A.D. Ceurbella and G.M. Hallograe (eds) Physiological Ecology of Harmful Algal Blooms, NATO ASI Series, Vol G 41. Springer-Verlag, Berlin, pp 453–474.Google Scholar
  45. Utermöhl, H. 1958Zur vevollkommnung der qualitativen phytoplankton-methodikMitt Int Theor Agnew Limnol9138Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of Marine SciencesUniversity of ConnecticutGrotonUSA
  2. 2.Environmental SciencesRoger Williams UniversityBristolUSA

Personalised recommendations