QTL mapping for long juvenile trait in soybean accession AGS 25 identifies association between a functional allele of FT2a and delayed flowering

Abstract

Soybean is a quantitative photoperiod sensitive short-day crop. In Asian countries, soybean is grown under rain-fed conditions. However, late planting due to delayed onset of the rainy season results in the reduced biomass leading to considerable yield losses. Long juvenility (LJ) trait in soybean delays flowering and helps in gaining biomass under short days. Our objective of this work was to understand the molecular basis of long juvenility in a genetic resource AGS 25. In this study, we used recombinant inbred lines (RILs) developed from an LJ genotype AGS 25 and conventional juvenile (CJ) genotype JS 93–05 and mapped a major quantitative trait locus (QTL) explaining upto 39.7% of the phenotypic variation. The identified QTL carried two candidate flowering genes FT2a and FT2b, in which genomic DNA sequencing of coding DNA sequence identified the former with a functional SNP variation but the latter was found monomorphic. The identified mutation in FT2a could be associated with LJ and validated in another segregating population (F2 of SL 958 × AGS 25). The novel mutation caused a non-synonymous substitution of conserved glycine with aspartic acid (G169D) and the mechanism of LJ through this mutation is to be further divulged. This identified mis-sense mutation found associated with delayed flowering in two previous reports. The identified new functional SNP created differential HinfI (e9-CAPS) restriction sites and high-resolution melt (HRM) profiles (e9-HRM) for CJ and LJ parents and are associated with delayed flowering in RILs and F2 population (SL 958 × AGS 25).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH et al (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25:605–614

    CAS  Article  Google Scholar 

  2. Anonymous: Annual Report 2013–2014. Directorate of Soybean Research Indore

  3. Bernard RL (1971) Two major genes for time of flowering and in soybeans. Crop Sci 11:242–244. https://doi.org/10.2135/cropsci.0011183X001100020022x

    Article  Google Scholar 

  4. Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  Google Scholar 

  5. Bonato ER, Vello NA (1999) E6 a dominant gene conditioning early flowering and in soybeans. Genet Mol Biol 22:229–232. https://doi.org/10.1590/S1415-47571999000200016

    Article  Google Scholar 

  6. Buzzell RI (1971) Inheritance of a soybean flowering response to fluorescent day length conditions. Can J Genet Cytol 13:703–707. https://doi.org/10.1139/g71-100

    Article  Google Scholar 

  7. Buzzell RI, Voldeng HD (1980) Inheritance of insensitivity to long day length. SoybeanGenet Newsl 7:26–29. https://doi.org/10.1093/jhered/esp113

    CAS  Article  Google Scholar 

  8. Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnol J 16:176–185

    CAS  Article  Google Scholar 

  9. Cai Y, Wang L, Chen L, Wu T, Liu L, Sun S, Wu C, Yao W, Jiang B, Yuan S, Han T, Hou W (2019) Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnol J. https://doi.org/10.1111/pbi.13199

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cao Y, Li S, He X, Chang F, Kong J, Gai J, Zhao T (2017) Mapping QTLs for plant height and flowering time in a Chinese summer planting soybean RIL population. Euphytica 213:39. https://doi.org/10.1007/s10681-016-1834-8

    CAS  Article  Google Scholar 

  11. Chen L, Cai Y, Liu X et al (2018) Improvement of Soybean Agrobacterium-Mediated Transformation Efficiency by Adding Glutamine and Asparagine into the Culture Media. Int J Mol Sci 19(10):3039

    Article  Google Scholar 

  12. Cober ER (2011) Long juvenile soybean flowering responses under very short photoperiods. Crop Sci 51:140–145. https://doi.org/10.2135/cropsci2010.05.0262

    Article  Google Scholar 

  13. Cober ER, Voldeng HD (2001) A new soybean and photoperiod-sensitivity locus linked to E1 and T. Crop Sci 41:698–701. https://doi.org/10.2135/cropsci2001.413698x

    Article  Google Scholar 

  14. Cober ER, Molnar SJ, Charette M, Voldeng HD (2010) A new locus for early in soybean. Crop Sci 50:524–527. https://doi.org/10.2135/cropsci2009.04.0174

    Article  Google Scholar 

  15. Corbesier L, Coupland G (2006) The quest for florigen: a review of recent progress. J Exp Bot 57:3395–3403

    CAS  Article  Google Scholar 

  16. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona GL, Turnbull C, Coupland G (2007) FT protein movement contributes to long distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    CAS  Article  Google Scholar 

  17. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  18. Gavioli (2013) Explanations for the Rise of Soybean in Brazil. In A Comprehensive Survey of International Soybean Research - Genetics, Physiology, Agronomy and Nitrogen Relationships", book edited by James E. Board, 2013, ISBN 978–953–51–0876–4under CC BY 3.0 license.

  19. Gupta S, Bhatia VS, Kumawat G, Thakur D, Singh G, Tripathi R, Satpute G, Devdas R, Husain SM, Chand S (2017) Genetic analysis for deciphering the status and role of photoperiodic and genes in major Indian soybean cultivar. J Gen 1:147–154

    Article  Google Scholar 

  20. Hartwig EE (1970) Growth and reproductive characteristics of soybean [Glycinemax (L.) Merr.] grown under short-day conditions. Crop Sci 12:47–53

    Google Scholar 

  21. Hartwig EE, Kiihl RAS (1979) Identification and utilization of a delayed flowering character in soybean for short-day conditions. Field Crops Res 2(2):145–151. https://doi.org/10.1016/0378-4290(79)90017-0

    Article  Google Scholar 

  22. Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    CAS  Article  Google Scholar 

  23. Hicks KA, Albertson TA, Meeks-Wagner DR (2001) Early Flowering 3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell 13:1281–1292

    CAS  Article  Google Scholar 

  24. Hsu CY, Liu Y, Luthe DS, Yuceer C (2006) Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell 18:1846–1861

    CAS  Article  Google Scholar 

  25. Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev 16:2006–2020

    CAS  Article  Google Scholar 

  26. Jaeger KE, Wigge PA (2007) FT protein acts as a long range signal in Arabidopsis. Curr Biol 17:1050–1054

    CAS  Article  Google Scholar 

  27. Jiang K, Liberatore KL, Park SJ, Alvarez JP, Lippman ZB (2013) Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture. PLoS Genet 9:e1004043

    Article  Google Scholar 

  28. Jiang B, Zhang S, Song W, Khan MAA, Sun S, Zhang C, Wu T, Wu C, Han T (2019) Natural variations of FT family genes in soybean. BMC Genomic 20:230

    Article  Google Scholar 

  29. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    CAS  Article  Google Scholar 

  30. Kong F, Liu B, Xia Z, Sato S, Kim BM, Watanabe S, Yamada T, Tabata S, Kanazawa A, Harada K, Abe J (2010) Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol 154:1220–1231

    CAS  Article  Google Scholar 

  31. Kong F, Nan H, Cao D, Li Y, Wu F, Wang J, Lu S, Yuan X, Abe J, Cober ER, Liu B (2014) A new dominant gene E9 conditions early flowering and maturity in soybean. Crop Sci 54:2529–2535. https://doi.org/10.2135/cropsci2014.03.0228

    CAS  Article  Google Scholar 

  32. Kumawat G, Maranna S, Gupta S, et al (2020) Identification of novel genetic sources for agronomic and quality traits in soybean using multi-trait allele specific genic marker assays. J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-020-00580-x

    Article  Google Scholar 

  33. Lawn RJ, James AT (2011a) Application of physiological understanding in soybean improvement. I. Understanding phenological constraints to adaptation and yield potential. Crop Pasture Sci 62:1–11. https://doi.org/10.1071/CP10289

    Article  Google Scholar 

  34. Lawn RJ, James AT (2011b) Application of physiological understanding in soybean improvement. II. Broadening phenological adaptation across regions and sowing dates. Crop Pasture Sci 62:12–24

    Article  Google Scholar 

  35. Li Y, Guan R, Liu Z, Ma Y, Wang L, Li L, Lin F, Luan W, Chen P, Yan Z, Guan Y, Zhu L, Ning X, Smulders MJN, Li W, Piao R, Cui Y, Yu Z, Guan M, Chang R, Hou A, Shi A, Zhang B, Zhu S, Qiu L (2008) Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China. Theor Appl Genet 117:857–871. https://doi.org/10.1007/s00122-008-0825-0

    CAS  Article  PubMed  Google Scholar 

  36. Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci USA 103:6398–6403

    CAS  Article  Google Scholar 

  37. Liu B, Kanazawa A, Matsumura H, Takahashi R, Harada K, Abe J (2008) Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180:995–1007. https://doi.org/10.1534/genetics.108.092742

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Liu W, Jiang B, Ma L, Zhang S, Zhai H, Xu X et al (2018) Functional diversification of flowering locus T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. New Phytol 217(3):1335–1345. https://doi.org/10.1111/nph.14884

    CAS  Article  PubMed  Google Scholar 

  39. Lochlainn SÓ, Amoah S, Graham NS, Alamer K, Rios JJ, Kurup S, Stoute A, Hammond JP, Østergaard L, King GJ, White PJ, Broadley MR (2011) High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes. Plant Methods 7(1):43. https://doi.org/10.1186/1746-4811-7-43

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Lu S, Zhao X, Hu Y, Liu S, Nan H, Li X, Fang C, Cao D, Shi X, Kong L, Su T, Zhang F, Li S, Wang Z, Yuan X, Cober ER, Weller JL, Liu B, Hou X, Tian Z, Kong F (2017) Natural variation at the soybean J locus improves adaptation to the tropics and enhance yield. Nature gen 49:773–779. https://doi.org/10.1038/ng.3819

    CAS  Article  Google Scholar 

  41. Mathieu J, Warthmann N, Küttner F, Schmid M (2007) Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr Biol 17:1055–1060

    CAS  Article  Google Scholar 

  42. Matsubara K, Ogiso-Tanaka E, Hori K, Ebana K, Ando T, Yano M (2012) Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiod flowering. Plant Cell Physiol 53:709–716. https://doi.org/10.1093/pcp/pcs028

    CAS  Article  PubMed  Google Scholar 

  43. Meng L, Huihui L, Zhang L, Wang J (2015) QTL ICI Mapping: Integrated Software genetic Linkage Map construction and Quantitative trait locus mapping in biparental populations. The Crop J 3:269–283. https://doi.org/10.1016/j.cj.2015.01.001

    Article  Google Scholar 

  44. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genome regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    CAS  Article  Google Scholar 

  45. Nan H, Cao D, Zhang D, Li Y, Lu S, Tang L, Yuan X, Liu B, Kong F (2014) GmFT2a and GmFT5aredundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean. PLoS ONE 9:e97669

    Article  Google Scholar 

  46. Neff MM, Turk E, Kalishman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet 18:613–615

    CAS  Article  Google Scholar 

  47. Notaguchi M, Abe M, Kimura T, Daimon Y, Kobayashi T, Yamaguchi A, Tomita Y, Dohi K, Mori M, Araki T (2008) Long distance, graft transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Physiol 49:1645–1658

    CAS  Article  Google Scholar 

  48. Ogiso-Tanaka E, Shimizu T, Hajika M, Kaga A, Ishimoto M (2019) Highly multiplexed AmpliSeq technology identifies novel variation of flowering time-related genes in soybean (Glycine max). DNA Res 26(3):243–260. https://doi.org/10.1093/dnares/dsz005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Parvez AQ, Gardner FP (1987) Daylength and sowing date responses of soybean lines with “juvenile” trait. Crop Sci. 27:305–310. https://doi.org/10.2135/cropsci1987.0011183X002700020037x

    Article  Google Scholar 

  50. Ray JD, Hinson K, Mankono JEB, Malo MF (1995) Genetic control of a long-juvenile trait in soybean. Crop Sci. 35:1001–1006. https://doi.org/10.2135/cropsci1995.0011183X003500040012x

    Article  Google Scholar 

  51. Sinclair TR, Hinson K (1992) Soybean flowering in response to the long juvenile trait. Crop Sci 32:1242–1248. https://doi.org/10.2135/cropsci1992.0011183X003200050036x

    Article  Google Scholar 

  52. Song Q, Jia G, Zhu Y, Grant D, Nelson RT, Hwang EY, Hyten DL, Cregan PB (2012) Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in Soybean. Crop Sci. 50:1950–1960. https://doi.org/10.2135/cropsci2009.10.0607

  53. Sun H, Jia Z, Cao D, Jiang B, Wu C, Hou W, Liu Y, Fei Z, Zhao D, Han T (2011) GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance. PLoS ONE 6:e29238

    CAS  Article  Google Scholar 

  54. Sun F, Xu M, Park C, Dwiyanti MS, Nagano AJ, Zhu J et al (2019) Characterization and quantitative trait locus mapping of lateflowering from a Thai soybean cultivar introduced into a photoperiod-insensitive genetic background. PLoS ONE 14(12):e0226116

    CAS  Article  Google Scholar 

  55. Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol 59:573–594

    CAS  Article  Google Scholar 

  56. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3 new capabilities and interfaces. Nucleic Acids Res. 40(15):e115

    CAS  Article  Google Scholar 

  57. Wang Z, Zhou Z, Liu Y, Liu T, Li Q, Ji Y, Li C, Fang C, Wang M, Wu M, Shen Y, Tang T, Ma J, Tian Z (2015) Functional evolution of phosphatidylethanolamine binding proteins in soybean and Arabidopsis. Plant Cell 27:323–336

    CAS  Article  Google Scholar 

  58. Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182:1251–1262. https://doi.org/10.1534/genetics.108.098772

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Watanabe S, Xia Z, Hideshima R, Tsubokura Y, Sato S, Harada K (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188:395–407. https://doi.org/10.1534/genetics.110.125062

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Watanabe S, Harada K, Abe J (2012) Genetic and molecular bases of photoperiod responses of flowering in soybean. Breed Sci 61:531–543. https://doi.org/10.1270/jsbbs.61.531

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Weller JL, Liew LC, Hecht VF, Rajandran V, Laurie RE, Ridge S, Wenden B, Vander Schoor JK, Jaminon O, Blassiau C, Dalmais M, Rameau C, Bendahmane A, Macknight RC, Lejeune-Hénaut I (2012) A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc Natl Acad Sci USA 109:21158–21163. https://doi.org/10.1073/pnas.1207943110

    Article  PubMed  Google Scholar 

  62. Xia Z, Watanabe S, Yamada T, Tsubokura Y, Nakashima H, Zhai H, Anai T, Sato S, Yamazaki T, Lu S, Wu H, Tabata K, Harada K (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA 109:E2155–E2164. https://doi.org/10.1073/pnas.1117982109

    Article  PubMed  Google Scholar 

  63. Xu M, Xu Z, Liu B, Kong F, Tsubokura Y, Watanabe S, Xia Z, Harada K, Kanazawa A, Yamada T, Abe J (2013) Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol 13:91. https://doi.org/10.1186/1471-2229-13-91

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    CAS  Article  Google Scholar 

  65. Zhai H, Lü S, Liang S, Wu H, Zhang X et al (2014) GmFT4, a homolog of flowering locus T, Is positively regulated by E1 and functions as a flowering repressor in soybean. PLoS ONE 9(2):e89030

    Article  Google Scholar 

  66. Zhao C, Takeshima R, Zhu J, Xu M, Sato M, Watanabe S, Kanazawa A, Liu B, Kong F, Yamada T, Abe J (2016) A recessive allele for delayed flowering at the soybean maturity locus E9 is a leaky allele of FT2a, a flowering locus T ortholog. BMC Plant Biol 16:20. https://doi.org/10.1186/s12870-016-0704-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Director, ICAR-IISR, Indore for providing all the required facilities for the experiments.

Funding

The research was supported by grant from Department of Biotechnology, Ministry of science and technology, Government of India through Department of Biotechnology project number “BT/PR15159/AGIII/103/919/2016”.

Author information

Affiliations

Authors

Contributions

SG identified AGS 25, developed RILs, planned all experiments and coordinated the work; RT and NA performed phenotyping and genotyping of RILs; GK and MR analyzed molecular data and conducted MassArray of soybean germplasm; VB, SM, GKS, SC and MJ contributed in inheritance studies and phenotyping; PV conducted RIL phenotyping in Pune.

Corresponding author

Correspondence to Sanjay Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tripathi, R., Agrawal, N., Kumawat, G. et al. QTL mapping for long juvenile trait in soybean accession AGS 25 identifies association between a functional allele of FT2a and delayed flowering. Euphytica 217, 36 (2021). https://doi.org/10.1007/s10681-021-02775-2

Download citation

Keywords

  • Long juvenility
  • Maturity
  • E9, FT2a, delayed flowering
  • Photoperiod