Fuzzy controller in the selection of sugarcane and energy cane ideotypes

Abstract

In response to the new requirements of the sugar-energy sector, sugarcane breeding programs are addressing the selection of clones for different purposes, e.g., sucrose production, ethanol production for first-generation (1G) and second-generation (2G) biofuels. Consequently, agronomic variables such as fiber content, sucrose content and biomass yield, become more relevant in the selection process, for underlying the definition of conventional, high biomass and multipurpose ideotypes. The relation between fiber and sucrose contents and biomass quantity should be used to differentiate thee different clone types: conventional clones, with high sucrose content and high biomass; high biomass, with high fiber content and high biomass; or multipurpose, with high fiber and sucrose contents and high biomass. In view of the difficulty of selecting different ideotypes from the same population, the objective of this study was to develop a method of selecting sugarcane clones for the different purposes. A population with 220 clones derived from crosses involving parents of different Saccharum species were subjected to the new methodology of clone selection with a fuzzy controller programmed to classify experimental clones in three ideotypes. Apart from the selection involving real data, the fuzzy controller was tested on 26 simulated populations. The controller proved to be efficient in the classification and selection of clones from the three ideotypes with real and simulated data.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Ardabili SF, Mahmoudi A, Gundoshmian TM, Behfar H (2016) Simulation of control system in environment of mushroom growing rooms using fuzzy logic control. Agric Sci Dev 5:1–5

    Article  Google Scholar 

  2. Azeredo AA, Bhering LL, Brasileiro BP, Cruz CD, Barbosa MH (2016) Selection in sugarcane based on inbreeding depression. Genet Mol Res. https://doi.org/10.4238/gmr.15027965

    Article  PubMed  Google Scholar 

  3. Azeredo AA et al (2017) Comparison between different selection indices in energy cane breeding. Genet Mol Res. https://doi.org/10.4238/gmr16019535

    Article  PubMed  Google Scholar 

  4. Bull T, Glasziou K (1963) The evolutionary significance of sugar accumulation in Saccharum. Austral J Biol Sci 16:737–742

    CAS  Article  Google Scholar 

  5. CONSECANA-SP (2006) Manual de instruções vol 5. Conselho dos produtores de Cana-de-açúcar do Estado de São Paulo. CONSECANA, Piracicaba

  6. Creste S, Pinto LR, Xavier MA (2014) The importance of the germplasm in developing agro-energetic profile sugarcane cultivars. In: Cortez LAB (ed) Sugarcane bioethanol — R&D for Productivity and Sustainability. Edgard Blücher, São Paulo, pp 353–358

    Google Scholar 

  7. Dias MO et al (2012) Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Biores Technol 103:152–161. https://doi.org/10.1016/j.biortech.2011.09.120

    CAS  Article  Google Scholar 

  8. Matlab (2016) Version R2016a [Software]. The Math Works Inc, Natick, MA

    Google Scholar 

  9. Matsuoka S (2017) Free fiber level drives resilience and hybrid vigor in energy cane. J Sci Achiev 2:1–35

    Google Scholar 

  10. Matsuoka S, Bressiani J, Maccheroni W, Fouto I (2010) Bioenergia da cana. In: Santos F, Borém A, Caldas C (eds) Cana-de-açúcar: bioenergia, açúcar e álcool: tecnologia e perspectivas. Suprema, London, pp 487–517

    Google Scholar 

  11. Meng Q, Qiu R, He J, Zhang M, Ma X, Liu G (2015) Development of agricultural implement system based on machine vision and fuzzy control. Comput Electron Agric 112:128–138. https://doi.org/10.1016/j.compag.2014.11.006

    Article  Google Scholar 

  12. Ming R et al. (2006) Sugarcane improvement through breeding and biotechnology. In: Plant breeding reviews, vol 27. Janick, J, p 15

  13. Ramdoyal K, Badaloo MGH (2002) Prebreeding in sugarcane with an emphasis on the programme of the Mauritius Sugar Industry Research Institute. In: Engels JMVR, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. CAB International Publishers, Oxon, pp 307–321

    Google Scholar 

  14. Ramos RS, Brasileiro BP, da Silveira LCI, Kist V, Peternelli LA, Barbosa MHP (2017) Selecting parents, families, and clones to obtain energy cane. Agron J 109:762–768. https://doi.org/10.2134/agronj2016.09.0489

    Article  Google Scholar 

  15. Resende MDV (2016) Software Selegen-REML/BLUP: a useful tool for plant breeding Crop Breeding and Applied. Biotechnology 16:330–339. https://doi.org/10.1590/1984-70332016v16n4a49

    Article  Google Scholar 

  16. Resende MDV, Duarte JB (2007) Precisão e controle experimental de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical 37:182–194

    Google Scholar 

  17. Santchurn D, Ramdoyal K, Badaloo MGH, Labuschagne MT (2014) From sugar industry to cane industry: evaluation and simultaneous selection of different types of high biomass canes. Biomass Bioenerg 61:82–92. https://doi.org/10.1016/j.biombioe.2013.11.023

    Article  Google Scholar 

  18. Santos LV et al (2016) Second-generation ethanol: the need is becoming a reality. Ind Biotechnol 12:40–57

    Article  Google Scholar 

  19. Silva JA (2017) The Importance of the wild cane saccharum spontaneum for bioenergy genetic breeding. Sugar Technol 19:229–240. https://doi.org/10.1007/s12355-017-0510-1

    CAS  Article  Google Scholar 

  20. Silveira LCI, Brasileiro BP, Kist V, Weber H, Daros E, Peternelli LA, Barbosa MHP (2015) Selection strategy in families of energy cane based on biomass production and quality traits. Euphytica 204:443–455. https://doi.org/10.1007/s10681-015-1364-9

    CAS  Article  Google Scholar 

  21. Sivanandam S, Sumathi S, Deepa S (2007) Introduction to fuzzy logic using MATLAB vol 1. Springer. https://doi.org/10.1007/978-3-540-35781-0

    Article  Google Scholar 

  22. Tew TL, Cobill RM (2008) Genetic improvement of sugarcane (Saccharum spp) as an energy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 273–294. doi:10.1007/978–0–387–70805–8_9

  23. Zadeh LA (2008) Is there a need for fuzzy logic? Inf Sci 178:2751–2779. https://doi.org/10.1016/j.ins.2008.02.012

    Article  Google Scholar 

  24. Zhou M, Joshi S (2012) Trends in broad sense heritability and implications for sugarcane breeding in South Africa. Sugar Tech 14:40–46. https://doi.org/10.1007/s12355-011-0128-7

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Amaro Afonso Campos de Azeredo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: General commands for the fuzzy controller in software Matlab

Appendix 2: Families, clones and variables: fiber content (FIB), apparent sucrose content (PC) and tons of stalks per hectare (TSH), used as input variables. Output variables of fuzzy controller with ranking for the selection of conventional (CO), multipurpose (MP) and high biomass (HB) clones

Family Clone Input variables Fuzzy controller output Fuzzy selection ranking
FIB (%) PC (%) TSH CO MP HB CO MP HB
RB946022 RB92579 PRBIO198 12.41 12.48 165.74 52.7856 28.717 28.717 1   
RB867515 US85-1008 PRBIO202 12.27 12.59 152.3 51.9627 28.5673 28.5673 2   
RB946022 RB92579 PRBIO41 12.99 13.19 149.95 49.9515 29.3377 29.3377 3   
Co453 IAC50/134 PRBIO68 12.28 13.38 148.19 48.2707 28.5779 28.5779 4   
RB946022 RB92579 PRBIO37 11.12 12.11 199.98 46.7464 27.3657 27.3657 5   
RB01649 IN84-58 PRBIO162 11.95 13.08 146.11 46.3591 28.2292 28.2292 6   
RB946022 RB92579 PRBIO110 11.77 12.02 199.18 45.3347 28.0409 28.0409 7   
B70710 RB72910 PRBIO89 13.9 11.97 154.54 44.5723 30.3275 30.3275 8 11  
RB946022 RB92579 PRBIO39 13.73 12.51 143.72 44.2781 30.1431 30.1431 9 14  
Co453 IAC50/134 PRBIO203 16.28 13.07 140.63 41.791 33.8086 33.8086 10 1 7
RB928064 US74-103 PRBIO223 13.21 11.93 139.32 40.5118 29.5769 29.5769 11   
Co62175 IAN 48–21 PRBIO123 13.03 13.88 137.99 39.8587 29.3803 29.3803 12   
RB93509 Co453 PRBIO217 13.30 11.59 189.26 39.4142 29.6726 29.6726 13   
RB946022 RB92579 PRBIO111 12.34 12.67 137.12 39.2614 28.6426 28.6426 14   
RB867515 US7614 PRBIO139 14.39 12.25 136.57 38.8939 30.8686 30.8686 15 5  
RB93509 Co453 PRBIO212 12.37 12.96 135.19 38.006 28.6752 28.6752 16   
RB867515 IM76-228 PRBIO221 11.90 11.43 285.57 37.6169 28.177 28.177 17   
RB946022 RB92579 PRBIO40 12.41 12.07 134.19 37.3926 28.717 28.717 18   
RB946022 RB92579 PRBIO36 13.64 11.38 148.85 37.1015 30.0428 30.0428 19 18  
RB93509 Co285 PRBIO49 13.72 11.34 153.58 36.7067 30.1318 30.1318 20 15  
CTC9 UM69-001 PRBIO32 13.49 11.49 127.99 34.1277 29.881 29.881 21 20  
Co62175 IAN 48–21 PRBIO55 11.7 11.01 144.39 33.98 27.9671 27.9671 22   
RB93509 Co285 PRBIO116 17.65 11.01 127.39 32.263 32.263 33.858   2 6
RB867522 IM76-235 PRBIO148 16.27 11.1 122.65 31.8553 31.0223 31.0223   3  
IM76-228 US85-1008 PRBIO92 14.88 10.49 151.05 31.339 30.9056 31.4158   4 16
RB867515 US85-1008 PRBIO11 14.46 10.29 161.84 30.7406 30.6014 30.9459   6  
Co453 IAC50/134 PRBIO149 20.8 10.49 125.32 30.586 30.586 32.9836   7 11
RB867520 IM76-233 PRBIO58 14.52 10.43 126.95 30.7018 30.3993 30.3993   8  
RB011941 US85-1008 PRBIO193 15.08 10.69 126.73 31.1774 30.3766 30.3766   9  
RB867523 IM76-236 PRBIO172 14.66 10.11 140.09 30.3473 30.3289 31.1686   10 21
CTC9 UM69-001 PRBIO180 13.9 10.96 147 33.6445 30.3275 30.3275   12  
RB011941 US85-1008 PRBIO147 13.81 10.35 147.83 30.9013 30.2296 30.2296   13  
RB867515 US7614 PRBIO26 13.72 10.44 126.39 30.6444 30.1318 30.1318   16  
IM76-228 RB867515 PRBIO143 16.78 9.94 169.38 30.0732 30.0732 38.3824   17 2
RB93509 Co285 PRBIO117 13.57 10.18 154.6 30.4876 29.9665 29.9665   19  
RB01649 IN84-58 PRBIO5 18.59 9.84 122.33 29.8442 29.8442 31.8667   21 15
RB928064 US74-103 PRBIO222 14.43 11.15 121.99 31.7495 29.8025 29.8025   22  
RB83102 IM76-229 PRBIO53 17.15 9.39 181.85 29.2541 29.2541 41.7136    1
RB011941 US85-1008 PRBIO2 16.49 7.95 171.58 27.173 27.173 36.3334    3
RB92579 IM76-229 PRBIO99 17.13 7.76 135.19 26.9162 26.9162 35.7221    4
RB867515 US7614 PRBIO27 16.75 9.59 136.23 29.5511 29.5511 34.4932    5
RB867519 IM76-232 PRBIO57 17.4 9.16 126.95 28.9139 28.9139 33.6646    8
RB011941 US85-1008 PRBIO62 16.01 6.73 143.51 25.7251 25.7251 33.582    9
RB92579 IM76-229 PRBIO230 15.81 8.49 161.32 27.9396 27.9396 33.1924    10
IAC87-3396 US85-1008 PRBIO199 15.62 5.02 141.99 24.3149 24.3149 32.6467    12
RB867515 US7614 PRBIO132 15.82 8.49 139.39 27.9396 27.9396 32.5885    13
RB867525 IM76-238 PRBIO174 17.1 8.12 123.99 27.4121 27.4121 32.4661    14
CB38-22 B70710 PRBIO228 14.85 6.24 161.68 25.2567 25.2567 31.3836    17
RB92579 IM76-229 PRBIO14 15.43 9.34 133.19 29.1787 29.1787 31.3093    18
RB867515 US7614 PRBIO61 14.75 8.13 137.59 27.4263 27.4263 31.2687    19
Co453 IAC50/134 PRBIO191 16.99 10.09 120.45 29.6296 29.6296 31.2445    20
RB867521 IM76-234 PRBIO59 14.65 5.97 137.85 25.0217 25.0217 31.1577    22

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Azeredo, A.A.C., Bhering, L.L., de Oliveira, R.A. et al. Fuzzy controller in the selection of sugarcane and energy cane ideotypes. Euphytica 216, 96 (2020). https://doi.org/10.1007/s10681-020-02626-6

Download citation

Keywords

  • Saccharum spp.
  • Bioenergy
  • 2G ethanol
  • Breeding
  • Selection indices