Skip to main content
Log in

Signatures of divergent selection for cold tolerance in maize

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Divergently selected genotypes can be used for detecting the genomic regions affecting the selected trait (selection signature). Moreover, the genetic distances (GDs) among divergently selected lines can be correlated with the agronomic performances of the crosses among them. Using as source the maize F2 of B73 × IABO78, we previously conducted four cycles of divergent recurrent selection and three cycles of divergent selection in inbreeding for cold tolerance at germination. We finally obtained 10 lines selected for low (L) and 10 lines selected for high (H) cold tolerance, which exhibited a notable divergence for both the selected and associated traits. Herein, we investigated the 20 lines and the 28 single diallel crosses among eight random lines (four L and four H); the main objectives were to identify the putative regions controlling the selected and associated traits and to study the relationships between crosses performances and GDs among their parental lines. Allele frequencies at 932 recombination blocks based on 19,220 polymorphic SNPs were obtained for the two lines’ groups; the F ST calculated across sliding windows indicated 18 regions highly divergent between groups. The increasing alleles for cold tolerance were contributed by both parents, consistently with the transgressive segregations previously found. Several regions associated to DG also affected various agronomic traits. The cross performances showed some relationships with the genetic distances among parental lines for traits affected by dominance, provided that all crosses were considered, while these relationships vanished when only L × H crosses were examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DG:

Difference in germination (G9.5–G25)

F1P:

Crosses performance

FE:

Field emergence

G25:

Germination at 25 °C

G9.5:

Germination at 9.5 °C

GCA:

General combining ability

GD:

Genetic distance

GY:

Grain yield

H:

Lines selected for high cold tolerance

KM:

Kernel moisture

L:

Lines selected for low cold tolerance

LASSO:

Least Absolute Shrinkage and Selection Operator

MP:

Mean of parental lines

MPH:

Midparent heterosis

MRD:

Modified Rogers’ Distance

PFW:

Plot fresh weight

PH:

Plant height

PS:

Pollen shedding date

SCA:

Specific combining ability

SFW:

Seedling fresh weight

SNP:

Single nucleotide polymorphism

UPGMA:

Unweighted pair group method arithmetic mean

References

  • Ajmone Marsan P, Castiglioni P, Fusari F, Kuiper M, Motto M (1998) Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor Appl Genet 96:219–227

    Article  Google Scholar 

  • Allam M, Revilla P, Djemel A, Tracy WF, Ordas B (2016) Identification of QTLs involved in cold tolerance in sweet × field corn. Euphytica 208:353–365

    Article  CAS  Google Scholar 

  • Beissinger TM, Hirsch CN, Vaillancourt B, Deshpande S, Barry K, Buell CR, Kaeppler SM, Gianola D, de Leon N (2014) A genome-wide scan for evidence of selection in a maize population under long-term artificial selection for ear number. Genetics 196:829–840

    Article  PubMed  CAS  Google Scholar 

  • Bernardo R (1992) Relationship between single-cross performance and molecular marker heterozygosity. Theor Appl Genet 83:628–634

    Article  PubMed  CAS  Google Scholar 

  • Bovenhuis H, Spelman R (2000) Selective genotyping to detect quantitative trait loci for multiple traits in outbred populations. J Dairy Sci 83:173

    Article  PubMed  CAS  Google Scholar 

  • Coque M, Gallais A (2006) Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize. Theor Appl Genet 112:1205–1220

    Article  PubMed  CAS  Google Scholar 

  • Cui Y, Zhang F, Xu J, Li Z, Xu S (2015) Mapping quantitative trait loci in selected breeding populations: a segregation distortion approach. Heredity 115:538–546

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Santis A, Landi P, Genchi G (1999) Changes of mitochondrial properties in maize seedlings associated with selection for germination at low temperature. Fatty acid composition, cytochrome c oxidase, and adenine nucleotide translocase activities. Plant Physiol 119:743–754

    Article  PubMed  PubMed Central  Google Scholar 

  • De Santis A, Frascaroli E, Baraldi E, Carnevali F, Landi P (2011) The activity of the plant mitochondrial inner membrane anion channel (PIMAC) of maize populations divergently selected for cold tolerance level is differentially dependent on the growth temperature of seedlings. Plant Cell Physiol 52:193–204

    Article  PubMed  CAS  Google Scholar 

  • Dhliwayo T, Pixley K, Menkir A, Warburton M (2009) Combining ability, genetic distances, and heterosis among elite CIMMYT and IITA tropical maize inbred lines. Crop Sci 49:1201–1210

    Article  Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advance in maize (Zea mays L.). Adv Agron 86:83–145

    Article  Google Scholar 

  • Falconer DS, Mckay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, London

    Google Scholar 

  • Frascaroli E, Landi P (2013) Divergent selection in a maize population for germination at low temperature in controlled environment: study of the direct response, of the trait inheritance and of correlated responses in the field. Theor Appl Genet 126:733–746

    Article  PubMed  Google Scholar 

  • Frascaroli E, Landi P (2016) Cold tolerance in field conditions, its inheritance, agronomic performance and genetic structure of maize lines divergently selected for germination at low temperature. Euphytica 209:771–788

    Article  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2011) glmnet: Lasso and elastic-net regularized generalized linear models. R package version 1.5.2, http://CRAN.R-project.org/package=glmnet

  • Frisch M, Thiemann A, Fu J, Schrag TA, Scholten S, Melchinger AE (2010) Transcriptome-based distance measures for grouping of germplasm and prediction of hybrid performance in maize. Theor Appl Genet 120:441–450

    Article  PubMed  CAS  Google Scholar 

  • Gallais A, Moreau L, Charcosset A (2007) Detection of marker-region association by studying change in marker frequencies with selection. Theor Appl Genet 14:669–681

    Article  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A, Berard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le Paslier MC, McMullen MD, Montalent P, Rose M, Schön CC, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6(e28):334

    Google Scholar 

  • Griffing B (1956) Concept of general and specific combining ability in relation to diallel crossing systems. Aust J Biol Sci 9:463–493

    Article  Google Scholar 

  • Han Z, Ku L, Zhang Z, Zhang J, Guo S, Liu H, Zhao R, Ren Z, Zhang L, Su H, Dong L, Chen Y (2014) QTLs for seed vigor-related traits identified in maize seeds germinated under artificial aging conditions. PLoS ONE 9(3):e92535

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirsch CN, Flint-Garcia SA, Beissinger TM, Eichten SR, Deshpande S, Barry K, McMullen MD, Holland JB, Buckler ES, Springer N, Buell CR, De Leon N, Kaeppler SM (2014) Insights into effects of long-term artificial selection on seed size in maize. Genetics 198:409–421

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu S, Lübberstedt T, Zhao G, Lee M (2016) QTL mapping of low-temperature germination ability in the maize IBM Syn4 RIL population. PLoS ONE 11(3):e0152795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang J, Zhang J, Li W, Hu W, Duan L, Feng Y, Qiu F, Yue B (2013) Genome-wide association analysis of ten chilling tolerance indices at the germination and seedling stages in maize. J Integr Plant Biol 55:735–744

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Tian B, Zhang W, Wang G, Wang J (2011) QTL mapping of coleorhiza length in maize (Zea mays L.) under two germination environmental conditions. Plant Breed 130:625–632

    Article  Google Scholar 

  • Landi P, Frascaroli E, Lovato A (1992) Divergent full-sib recurrent selection for germination at low temperature in a maize population. Euphytica 64:21–29

    Google Scholar 

  • Laurie CC, Chasalow SD, LeDeaux JR, McCarroll R, Bush D, Hauge B, Lai C, Clark D, Rocheford TR, Dudley J (2004) The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel. Genetics 168:2141–2155

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee H, Ho H, Kao C (2014) A new simple method for improving QTL mapping under selective genotyping. Genetics 198:1685–1698

    Article  PubMed  PubMed Central  Google Scholar 

  • Leipner J, Jompuk C, Camp K, Stamp P, Fracheboud Y (2008) QTL studies reveal little relevance of chilling-related seedling traits for yield in maize. Theor Appl Genet 116:555–562

    Article  PubMed  Google Scholar 

  • Lewontin RC, Krakauer J (1973) Distribution of gene frequency as a test of the theory of the selective neutrality of polymorphisms. Genetics 74:175–195

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Wang G, Fu J, Li L, Jia G, Ren L, Lubberstedt T, Wang G, Wang J, Gu R (2018) QTL mapping in three connected populations reveals a set of consensus genomic regions for low temperature germination ability in Zea mays L. Front Plant Sci 9:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Lippman ZB, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23:60–66

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Zhang L, Wang J, Li C, Zeng X, Xie S, Zhang Y, Liu S, Hu S, Wang J, Lee M, Lübberstedt T, Zhao G (2017) Quantitative trait locus analysis for deep-sowing germination ability in the maize IBM Syn10 DH population. Front Plant Sci 8:813

    Article  PubMed  PubMed Central  Google Scholar 

  • Livini C, Ajmone-Marsan P, Melchinger AE, Messmer MM, Motto M (1992) Genetic diversity of maize inbred lines within and among heterotic groups revealed by RFLPs. Theor Appl Genet 84:17–25

    Article  PubMed  CAS  Google Scholar 

  • Melchinger AE (1999) Genetic diversity and heterosis. In: Coors JG, Pandy S (eds) Genetic exploitation of heterosis in crops, ASA–CSSA–SSSA. Madison, WI, pp 99–118

    Google Scholar 

  • Melchinger AE, Boppenmeier J, Dhillon BS, Pollmer WG, Herrmann RG (1992) Genetic diversity for RFLPs in European maize inbreds: II. Relation to performance of hybrids within versus between groups for forage traits. Theor Appl Genet 84:672–681

    PubMed  CAS  Google Scholar 

  • Melchinger AE, Orsini E, Schön CC (2012) QTL mapping under truncation selection in homozygous lines derived from biparental crosses. Theor Appl Genet 124:543–553

    Article  PubMed  Google Scholar 

  • Navabi A, Mather DE, Bernier J, Spaner DM, Atlin GN (2009) QTL detection with bidirectional and unidirectional selective genotyping: marker-based and trait-based analyses. Theor Appl Genet 118:347–358

    Article  PubMed  Google Scholar 

  • Nguyen HT, Leipner J, Stamp P, Guerra-Peraza O (2009) Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiol Biochem 47:116–122

    Article  PubMed  CAS  Google Scholar 

  • Paradis E (2010) pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26:419–420

    Article  PubMed  CAS  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  PubMed  CAS  Google Scholar 

  • Presterl T, Ouzunova M, Schmidt W, Möller EM, Röber FK, Knaak C, Ernst K, Westhoff P, Geiger HH (2007) Quantitative trait loci for early plant vigour of maize grown in chilly environments. Theor Appl Genet 114:1059–1070

    Article  PubMed  Google Scholar 

  • R Core Team 2013 R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, http://www.R-project.org/

  • Reif JC, Melchinger AE, Frisch M (2005) Genetical and mathematical properties of similarity and dissimilarity coefficients applied in plant breeding and seed bank management. Crop Sci 45:1–7

    Article  Google Scholar 

  • Revilla P, Butrón A, Rodríguez VM, Malvar RA, Ordás A (2009) Identification of genes related to germination in aged maize seed by screening natural variability. J Exp Bot 60:4151–4157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Revilla P, Rodriguez VM, Ordas A, Rincent R, Charcosset A, Giauffret C, Melchinger AE, Schon CC, Bauer E, Altmann T, Brunel D, Gonzalez JM, Campo L, Ouzunova M, Alvarez A, de Galarreta JIR, Laborde J, Malvar RA (2016) Association mapping for cold tolerance in two large maize inbred panels. BMC Plant Biol 16:127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez VM, Butron A, Rady MOA, Soengas P, Revilla P (2014) Identification of quantitative trait loci involved in the response to cold stress in maize (Zea mays L.). Mol Breed 33:363–371

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Wang J, Crouch JH, Xu Y (2010) Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement. Mol Breed 26:493–511

    Article  Google Scholar 

  • Tampieri E, Baraldi E, Carnevali F, Frascaroli E, De Santis A (2011) The activity of plant inner membrane anion channel (PIMAC) can be performed by a chloride channel (CLC) protein in mitochondria from seedlings of maize populations divergently selected for cold tolerance. J Bioenerg Biomembr 43:611–621

    Article  PubMed  CAS  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Statist Soc B 58:267–288

    Google Scholar 

  • Tuszynski J (2014) caTools: tools: moving window statistics, GIF, Base64, ROC AUC, etc. R package version, 1

  • Wang B, Zhang Z, Fu Z, Liu Z, Hu Y, Tang J (2016) Comparative QTL analysis of maize seed artificial aging between an immortalized F2 population and its corresponding RILs. The Crop J 4:30–39

    Article  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    PubMed  CAS  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, vol 4. Variability within and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

  • Würschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125:201–210

    Article  PubMed  Google Scholar 

  • Yousef GG, Juvik JA (2002) Enhancement of seedling emergence in sweet corn by marker-assisted backcrossing of beneficial QTL. Crop Sci 42:96–104

    Article  PubMed  Google Scholar 

  • Zhang LP, Lin GY, Liu DN, Foolad MR (2003) Mapping QTLs conferring early blight (Alternaria solani) resistance in a Lycopersicum esculentum × L. hirsutum cross by selective genotyping. Mol Breed 12:3–19

    Article  CAS  Google Scholar 

  • Zhao Y, Gowda M, Longin FH, Würschum T, Ranc N, Reif JC (2012) Impact of selective genotyping in the training population on accuracy and bias of genomic selection. Theor Appl Genet 125:707–713

    Article  PubMed  CAS  Google Scholar 

  • Zheng DH, Van K, Wang L, Lee SH (2008) Molecular genetic distance and hybrid performance between Chinese and American maize (Zea mays L.) inbreds. Austr J Agric Res 59:1010–1020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was conducted with the financial support of the University of Bologna, Grant RFO (2009–2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Frascaroli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 738 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frascaroli, E., Landi, P. Signatures of divergent selection for cold tolerance in maize. Euphytica 214, 80 (2018). https://doi.org/10.1007/s10681-018-2163-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-018-2163-x

Keywords

Navigation