Association mapping reveals loci associated with multiple traits that affect grain yield and adaptation in soft winter wheat

Abstract

Genome-wide association studies (GWAS) are useful to facilitate crop improvement via enhanced knowledge of marker-trait associations (MTA). A GWAS for grain yield (GY), yield components, and agronomic traits was conducted using a diverse panel of 239 soft red winter wheat (Triticum aestivum) genotypes evaluated across two growing seasons and eight site-years. Analysis of variance showed significant environment, genotype, and genotype-by-environment effects for GY and yield components. Narrow sense heritability of GY (h 2 = 0.48) was moderate compared to other traits including plant height (h 2 = 0.81) and kernel weight (h 2 = 0.77). There were 112 significant MTA (p < 0.0005) detected for eight measured traits using compressed mixed linear models and 5715 single nucleotide polymorphism markers. MTA for GY and agronomic traits coincided with previously reported QTL for winter and spring wheat. Highly significant MTA for GY showed an overall negative allelic effect for the minor allele, indicating selection against these alleles by breeders. Markers associated with multiple traits observed on chromosomes 1A, 2D, 3B, and 4B with positive minor effects serve as potential targets for marker assisted breeding to select for improvement of GY and related traits. Following marker validation, these multi-trait loci have the potential to be utilized for MAS to improve GY and adaptation of soft red winter wheat.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Abdurakhmonov IY, Abdukarimov A (2008) Application of association mapping to understanding the genetic diversity of plant germplasm resources. Int J Plant Genom 2008:574927. doi:10.1155/2008/574927

    Google Scholar 

  2. Addison CK, Mason RE, Brown-Guedira G, Guedira M, Hao Y, Miller RG, Subramanian N, Lozada DN, Acuna A, Arguello MN, Johnson JW, Ibrahim AMH, Sutton R, Harrison SA (2016) QTL and major genes influencing grain yield potential in soft red winter wheat adapted to the southern United States. Euphytica:1-13. doi:10.1007/s10681-016-1650-1

  3. Bellucci A, Torp AM, Bruun S, Magid J, Andersen SB, Rasmussen SK (2015) Association mapping in Scandinavian Winter wheat for yield, plant height, and traits important for second-generation bioethanol production. Front Plant Sci 6:1046. doi:10.3389/fpls.2015.01046

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T (2012) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet 125(7):1473–1485

    Article  PubMed  Google Scholar 

  5. Benson J, Brown-Guedira G, Paul Murphy J, Sneller C (2012) Population structure, linkage disequilibrium, and genetic diversity in soft winter wheat enriched for fusarium head blight resistance. Plant Genome 5(2):71–80

    CAS  Article  Google Scholar 

  6. Bentley AR, Scutari M, Gosman N, Faure S, Bedford F, Howell P, Cockram J, Rose GA, Barber T, Irigoyen J, Horsnell R, Pumfrey C, Winnie E, Schacht J, Beauchêne K, Praud S, Greenland A, Balding D, Mackay IJ (2014) Applying association mapping and genomic selection to the dissection of key traits in elite European wheat. Theor Appl Genet 127(12):2619–2633. doi:10.1007/s00122-014-2403-y

    CAS  Article  PubMed  Google Scholar 

  7. Bordes J, Goudemand E, Duchalais L, Chevarin L, Oury FX, Heumez E, Lapierre A, Perretant MR, Rolland B, Beghin D (2014) Genome-wide association mapping of three important traits using bread wheat elite breeding populations. Mol Breed 33(4):755–768

    Article  Google Scholar 

  8. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635. doi:10.1093/bioinformatics/btm308

    CAS  Article  PubMed  Google Scholar 

  9. Breseghello F, Sorrells ME (2006a) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46(3):1323–1330. doi:10.2135/cropsci2005.09-0305

    Article  Google Scholar 

  10. Breseghello F, Sorrells ME (2006b) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172(2):1165–1177

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cabrera A, Souza E, Guttieri M, Sturbaum A, Hoffstetter A, Sneller C (2014) Genetic diversity, linkage disequilibrium, and genome evolution in soft winter wheat. Crop Sci 54(6):2433–2448

    Article  Google Scholar 

  12. Cavanagh C, Chao S, Wang S, Huang B, Stephen S, Kiani S, Forrest K, Saintenacc C, Brown-Guedira G, Akhunova A, See D, Bai G, Pumphrey M, LTomar, Wong D, Kong S, Reynolds M, Silva MLd, Bockelman H, LTalbert, Anderson J, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell P, Dubcovsky J, MMorell, Sorrells M, Hayden M, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. PNAS 110 (20):8057–8062. doi:www.pnas.org/cgi/doi/10.1073/pnas.1217133110

  13. Chao S, Dubcovsky J, Dvorak J, Luo M-C, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME, Akhunov ED (2010) Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11(1):1–17. doi:10.1186/1471-2164-11-727

    Article  Google Scholar 

  14. Chen X, Min D, Yasir TA, Hu Y-G (2012) Genetic diversity, population structure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR markers. PLoS ONE 7(9):e44510

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74(368):829–836

    Article  Google Scholar 

  16. Dreisigacker S, Shewayrga H, Crossa J, Arief VN, DeLacy IH, Singh RP, Dieters MJ, Braun H-J (2012) Genetic structures of the CIMMYT international yield trial targeted to irrigated environments. Mol Breed 29(2):529–541

    Article  Google Scholar 

  17. Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conser Genet Resour 4(2):359–361

    Article  Google Scholar 

  18. Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127(4):791–807

    CAS  Article  PubMed  Google Scholar 

  19. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4(3):250–255

    Article  Google Scholar 

  21. Endelman JB, Jannink J-L (2012) Shrinkage estimation of the realized relationship matrix. G3 (Bethesda) 2(11):1405–1413

    Article  Google Scholar 

  22. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    CAS  Article  PubMed  Google Scholar 

  23. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2):479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Federer WT, Crossa J (2012) I.4 screening experimental designs for quantitative trait loci, association mapping, genotype-by environment interaction, and other investigations. Front Physiol 3:156. doi:10.3389/fphys.2012.00156

    Article  PubMed  PubMed Central  Google Scholar 

  25. Federer WT, Raghavarao D (1975) Augmented designs. Biometrics 31(1):29–35. doi:10.2307/2529707

    Article  Google Scholar 

  26. Federer WT, Reynolds M, Crossa J (2001) Combining results from augmented designs over sites. Agron J 93(2):389–395

    Article  Google Scholar 

  27. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374. doi:10.1146/annurev.arplant.54.031902.134907

    CAS  Article  PubMed  Google Scholar 

  28. Francis R (2016) Pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour 17(1):27–32. doi:10.1111/1755-0998.12509

    Article  PubMed  Google Scholar 

  29. Green AJ, Berger G, Griffey CA, Pitman R, Thomason W, Balota M, Ahmed A (2012) Genetic yield improvement in soft red winter wheat in the Eastern United States from 1919 to 2009. Crop Sci 52(5):2097–2108. doi:10.2135/cropsci2012.01.0026

    Article  Google Scholar 

  30. Guedira M, Maloney P, Xiong M, Petersen S, Murphy JP, Marshall D, Johnson J, Harrison S, Brown-Guedira G (2014) Vernalization duration requirement in soft winter wheat is associated with variation at the locus. Crop Sci 54(5):1960–1971

    CAS  Article  Google Scholar 

  31. Guedira M, Xiong M, Hao YF, Johnson J, Harrison S, Marshall D, Brown-Guedira G (2016) Heading date QTL in winter wheat (Triticum aestivum) coincide with major developmental genes VERNALIZATION1 and PHOTOPERIOD1. PLoS ONE 11(5):e0154242. doi:10.1371/journal.pone.0154242

    Article  PubMed  PubMed Central  Google Scholar 

  32. Heidari B, Saeidi G, Sayed Tabatabaei BE, Suenaga K (2012) QTLs involved in plant height, peduncle length and heading date of wheat (Triticum aestivum L.). J Agr Sci Technol 14(5):1090–1104

    Google Scholar 

  33. Hoffstetter A, Cabrera A, Sneller C (2016) Identifying quantitative trait loci for economic traits in an elite soft red winter wheat population. Crop Sci 56:1–12

    Article  Google Scholar 

  34. Institute SAS (2011) SAS system options: reference, 2nd edn. SAS Institute, Cary

    Google Scholar 

  35. Kamran A, Iqbal M, Spaner D (2014) Flowering time in wheat (Triticum aestivum L.): a key factor for global adaptability. Euphytica 197(1):1–26. doi:10.1007/s10681-014-1075-7

    CAS  Article  Google Scholar 

  36. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178(3):1709–1723. doi:10.1534/genetics.107.080101

    Article  PubMed  PubMed Central  Google Scholar 

  37. Laido G, Marone D, Russo MA, Colecchia SA, Mastrangelo AM, De Vita P, Papa R (2014) Linkage disequilibrium and genome-wide association mapping in tetraploid wheat (Triticum turgidum L.). PLoS ONE 9(4):e95211

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lee S, Abecasis GR, Boehnke M, Lin X (2014) Rare-variant association analysis: study designs and statistical tests. Am J of Hum Genet 95(1):5–23. doi:10.1016/j.ajhg.2014.06.009

    CAS  Article  Google Scholar 

  39. Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28(18):2397–2399. doi:10.1093/bioinformatics/bts444

    CAS  Article  PubMed  Google Scholar 

  40. Lopes MS, Dreisigacker S, Pena RJ, Sukumaran S, Reynolds MP (2015) Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat. Theor Appl Genet 128(3):453–464. doi:10.1007/s00122-014-2444-2

    CAS  Article  PubMed  Google Scholar 

  41. Mason RE, Hays DB, Mondal S, Ibrahim AMH, Basnet BR (2013) QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions. Euphytica 194(2):243–259. doi:10.1007/s10681-013-0951-x

    Article  Google Scholar 

  42. Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4(4):792–794

    Article  Google Scholar 

  43. Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147(3):969–977. doi:10.1104/pp.108.118232

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21(8):2194–2202. doi:10.1105/tpc.109.068437

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  46. Neumann K, Kobiljski B, Denčić S, Varshney RK, Varshney RK, Börner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breeding 27(1):37–58. doi:10.1007/s11032-010-9411-7

    Article  Google Scholar 

  47. Nielsen NH, Backes G, Stougaard J, Andersen SU, Jahoor A (2014) Genetic diversity and population structure analysis of European Hexaploid bread wheat (Triticum aestivum L.) varieties. PLoS ONE 9(4):e94000. doi:10.1371/journal.pone.0094000

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pallotta M, Warner P, Fox R, Kuchel H, Jefferies S, Langridge P (2003) Marker assisted wheat breeding in the southern region of Australia. In: Proceedings of 10th International Wheat Genetics Symposium, Paestum, Italy, pp 1–6

  49. Patel D, Zander M, Dalton-Morgan J, Batley J (2015) Advances in plant genotyping: Where the future will take us. In: Batley J (ed) Plant genotyping, vol 1245. Methods Mol Biol. Springer, New York, pp 1–11. doi:10.1007/978-1-4939-1966-6_1

  50. Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5(3):92–102

    CAS  Article  Google Scholar 

  51. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Q-u Ain, Rasheed A, Anwar A, Mahmood T, Imtiaz M, Mahmood T, Xia X, He Z, Quraishi UM (2015) Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front Plant Sci 6:743. doi:10.3389/fpls.2015.00743

    Google Scholar 

  53. Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusić D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M-C, Hollington PA, Aragués R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110(5):865–880. doi:10.1007/s00122-004-1902-7

    CAS  Article  PubMed  Google Scholar 

  54. Rebetzke GJ, Ellis MH, Bonnett DG, Condon AG, Falk D, Richards RA (2011) The Rht13 dwarfing gene reduces peduncle length and plant height to increase grain number and yield of wheat. Field Crops Res 124(3):323–331. doi:10.1016/j.fcr.2011.06.022

    Article  Google Scholar 

  55. Ruggieri V, Francese G, Sacco A, D’Alessandro A, Rigano MM, Parisi M, Milone M, Cardi T, Mennella G, Barone A (2014) An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biol. doi:10.1186/s12870-014-0337-9

    PubMed  PubMed Central  Google Scholar 

  56. Sehgal D, Autrique E, Singh R, Ellis M, Singh S, Dreisigacker S (2017) Identification of genomic regions for grain yield and yield stability and their epistatic interactions. Sci Rep. 7: 41578. doi:10.1038/srep41578. https://www.nature.com/articles/srep41578#supplementary-information

  57. Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield With quantitative trait loci mapping in Brassica napus. Genetics 182(3):851–861. doi:10.1534/genetics.109.101642

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Snape JW, Law CN, Worland AJ (1977) Whole chromosome analysis of height in wheat. Heredity 38(1):25–36

    Article  Google Scholar 

  59. Snape JW, Butterworth K, Whitechurch E, Worland AJ (2001) Waiting for fine times: genetics of flowering time in wheat. Euphytica 119(1–2):185–190. doi:10.1023/a:1017594422176

    CAS  Article  Google Scholar 

  60. Sorrells ME, Yu J (2009) Linkage disequilibrium and association mapping in the Triticeae. In: Genetics and genomics of the Triticeae. Springer: New York, pp 655–683

  61. Sukumaran S, Yu J (2014) Association Mapping of genetic resources: Achievements and future perspectives. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources: Volume 1. Managing, sequencing and mining genetic resources. Springer Netherlands, Dordrecht, pp 207–235. doi:10.1007/978-94-007-7572-5_9

  62. Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds M (2014) Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet:1–11. doi:10.1007/s00122-014-2435-3

  63. Tadesse W, Ogbonnaya FC, Jighly A, Sanchez-Garcia M, Sohail Q, Rajaram S, Baum M (2015) Genome-wide association mapping of yield and grain quality traits in winter wheat genotypes. PLOS ONE. doi:10.1371/journal.pone.0141339

    Google Scholar 

  64. R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  65. Thomson M (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotech 2(3):195–212

    Article  Google Scholar 

  66. Turner SD (2014) qqman: an R package for visualizing GWAS results using QQ and manhattan plots. bioRxiv:005165

  67. Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118(2):313–325. doi:10.1007/s00122-008-0901-5

    CAS  Article  PubMed  Google Scholar 

  68. Wang G, Leonard JM, von Zitzewitz J, Peterson CJ, Ross AS, Riera-Lizarazu O (2014a) Marker-trait association analysis of kernel hardness and related agronomic traits in a core collection of wheat lines. Mol Breeding 34(1):177–184. doi:10.1007/s11032-014-0028-0

    Google Scholar 

  69. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M-C, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E, Int Wheat Genome S (2014b) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12(6):787–796. doi:10.1111/pbi.12183

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Weir BS, Cockerham C (1996) Genetic data analysis II: Methods for discrete population genetic data. Sinauer Assoc, Inc, Sunderland, MA, USA

    Google Scholar 

  71. Wilhelm EP, Boulton MI, Al-Kaff N, Balfourier F, Bordes J, Greenland AJ, Powell W, Mackay IJ (2013) Rht-1 and Ppd-D1 associations with height, GA sensitivity, and days to heading in a worldwide bread wheat collection. Theor Appl Genet 126(9):2233–2243. doi:10.1007/s00122-013-2130-9

    CAS  Article  PubMed  Google Scholar 

  72. Wolfinger R, Federer WT, Cordero-Brana O (1997) Recovering information in augmented designs, using SAS PROC GLM and PROC MIXED. Agron J 89(6):856–859

    Article  Google Scholar 

  73. Würschum T, Langer SM, Longin CFH (2015) Genetic control of plant height in European winter wheat cultivars. Theor Appl Genet 128(5):865–874. doi:10.1007/s00122-015-2476-2

    Article  PubMed  Google Scholar 

  74. Zanke C, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Beier S, Ganal MW, Röder MS (2014a) Genetic architecture of main effect QTL for heading date in European winter wheat. Front Plant Sci 5:217. doi:10.3389/fpls.2014.00217

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann K (2014b) Whole genome association mapping of plant height in winter wheat (Triticum aestivum L.). PLoS ONE 9(11):e113287

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann F, Eichhorn A, Polley A, Jaenecke C, Ganal MW, Röder MS (2015) Analysis of main effect QTL for thousand grain weight in European winter wheat (Triticum aestivum L.) by genome-wide association mapping. Front. Plant Sci 6:644. doi:10.3389/fpls.2015.00644

    Google Scholar 

  77. Zhang D, Bai G, Zhu C, Yu J, Carver BF (2010) Genetic diversity, population structure, and linkage disequilibrium in US elite winter wheat. Plant Genome 3(2):117–127

    CAS  Article  Google Scholar 

  78. Zhang L, Liu D, Guo X, Yang W, Sun J, Wang D, Sourdille P, Zhang A (2011) Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers. BMC Genet 12(1):42

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLOS Genet. doi:10.1371/journal.pgen.0030004

    Google Scholar 

  80. Zhao K, Tung C-W, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467. http://www.nature.com/ncomms/journal/v2/n9/suppinfo/ncomms1467_S1.html

  81. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1(1):5–20. doi:10.3835/plantgenome2008.02.0089

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Agriculture and Food Research Initiative (AFRI) of the US Department of Agriculture’s National Institute of Food and Agriculture (USDA-NIFA) Grant 2012-67013-19436, the Monsanto Beachell-Borlaug International Scholars Program (MBBISP), and the National Research Initiative Competitive Grants 2011-68002-30029 and 2017-67007-25939 from USDA-NIFA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dennis N. Lozada.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lozada, D.N., Mason, R.E., Babar, M.A. et al. Association mapping reveals loci associated with multiple traits that affect grain yield and adaptation in soft winter wheat. Euphytica 213, 222 (2017). https://doi.org/10.1007/s10681-017-2005-2

Download citation

Keywords

  • Agronomic traits
  • Compressed mixed linear model (CMLM)
  • Grain yield
  • Genome-wide association studies (GWAS)
  • Linkage disequilibrium (LD)
  • Soft red winter wheat