Skip to main content
Log in

Identification and validation of root length QTLs for water stress resistance in hexaploid wheat (Titicum aestivum L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Thorough understanding of the genetic mechanisms governing drought adaptive traits can facilitate drought resistance improvement. This study was conducted to identify chromosome regions harbouring QTLs contributing for water stress resistance in wheat. A RIL mapping population derived from a cross between W7984 (Synthetic) and Opata 85 was phenotyped for root length and root dry weight under water stress and non-stress growing conditions. ANOVA showed highly significant (p ≤ 0.01) variation among the RILs for both traits. Root length and root dry weight showed positive and significant (p ≤ 0.01) phenotypic correlation. Broad sense heritability was 86% for root length under stress and 65% for root dry weight under non-stress conditions. A total of eight root length and five root dry weight QTLs were identified under both water conditions. Root length QTLs Qrln.uwa.1BL, Qrln.uwa.2DS, Qrln.uwa.5AL and Qrln.uwa.6AL combined explained 43% of phenotypic variation under non-stress condition. Opata was the source of favourable alleles for root length QTLs under non-stress condition except for Qrln.uwa.6AL. Four stress specific root length QTLs, Qrls.uwa.1AS, Qrls.uwa.3AL, Qrls.uwa.7BL.1 and Qrls.uwa.7BL.2 jointly explained 47% of phenotypic variation. Synthetic wheat contributed favourable alleles for Qrls.uwa.1AS and Qrls.uwa.3AL. Two stable root dry weight QTLs on chromosomes 4AL and 5AL were consistently found in both water conditions. Three validation populations were developed by crossing cultivars Lang, Yitpi, and Chara with Synthetic W7984 to transfer two of the QTLs identified under stress condition. The F2.3 and F3.4 validation lines were phenotyped under the same level of water stress as RILs to examine the effect of these QTLs. There were 13.5 and 14.5% increases in average root length due to the inheritance of Qrls.uwa.1AS and Qrls.uwa.3AL, respectively. The result indicated that closely linked SSR markers Xbarc148 (Qrls.uwa.1AS) and Xgwm391 (Qrls.uwa.3AL) can be incorporated into MAS for water stress improvement in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ayalew H, Wondale L, Teshager A (2014) Gge biplot analysis on the performance of wheat genotype for hectolitre weight and mega environments identification in north western Ethiopia. Aust J Crop Sci 8:1435

    Google Scholar 

  • Ayalew H, Ma X, Yan G (2015) Screening wheat (Triticum spp.) genotypes for root length under contrasting water regimes: potential sources of variability for drought resistance breeding. J Agron Crop Sci 201:189–194. doi:10.1111/jac.12116

    Article  CAS  Google Scholar 

  • Ayalew H, Dessalegn T, Liu H, Yan G (2016a) Performance of ethiopian bread wheat (Tritium aestivum L.) genotypes under contrasting water regimes: potential sources of variability for drought resistance breeding. Aus J Crop Sci 10:370–376

    Article  Google Scholar 

  • Ayalew H, Liu H, Yan GJ (2016b) Quantitative analysis of gene actions controlling root length under water stress in spring wheat (Triticum aestivum L.) genotypes. Crop Pasture Sci 67:489–494. doi:10.1071/Cp15244

    Article  Google Scholar 

  • Bai CH, Liang YL, Hawkesford MJ (2013) Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat. J Exp Bot 64:1745–1753. doi:10.1093/jxb/ert041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barakat MN, Saleh MS, Al-Doss AA, Moustafa KA, Elshafei AA, Zakri AM, Al-Qurainy FH (2015) Mapping of QTLs associated with abscisic acid and water stress in wheat. Biol Plant 59:291–297. doi:10.1007/s10535-015-0499-9

    Article  CAS  Google Scholar 

  • Blum A (2011a) Drought resistance—is it really a complex trait? Func Plant Biol 38:753–757

    Article  Google Scholar 

  • Blum A (2011b) Plant breeding for water-limited environments. Springer, New York

    Book  Google Scholar 

  • Blum A (2014) Genomics for drought resistance—getting down to earth. Func Plant Biol 41:1191–1198. doi:10.1071/Fp14018

    Article  CAS  Google Scholar 

  • Blum A, Sinmena B, Ziv O (1980) An evaluation of seed and seedling drought tolerance screening-tests in wheat. Euphytica 29:727–736. doi:10.1007/Bf00023219

    Article  Google Scholar 

  • Borner A, Schumann E, Furste A, Coster H, Leithold B, Roder S, Weber E (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936. doi:10.1007/s00122-002-0994-1

    Article  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2007) QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crop Res 101:172–179

    Article  Google Scholar 

  • Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N (2015) From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. Front Plant Sci 6:1012. doi:10.3389/fpls.2015.01012

    Article  PubMed  PubMed Central  Google Scholar 

  • Cane MA, Maccaferri M, Nazemi G, Salvi S, Francia R, Colalongo C, Tuberosa R (2014) Association mapping for root architectural traits in durum wheat seedlings as related to agronomic performance. Mol Breed 34:1629–1645. doi:10.1007/s11032-014-0177-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B 363:557–572. doi:10.1098/rstb.2007.2170

    Article  CAS  Google Scholar 

  • Collard BCY, Jolley R, Bovill WD, Grams RA, Wildermuth GB, Sutherland MW (2006) Confirmation of QTL mapping and marker validation for partial seedling resistance to crown rot in wheat line ‘2-49’. Aust J Agric Res 57:967–973. doi:10.1071/Ar05419

    Article  CAS  Google Scholar 

  • Comas LH, Becker SR, Cruz VM, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442. doi:10.3389/fpls.2013.00442

    Article  PubMed  PubMed Central  Google Scholar 

  • Edae EA, Byrne PF, Manmathan H, Haley SD, Moragues M, Lopes MS, Reynolds MP (2013) Association mapping and nucleotide sequence variation in five drought tolerance candidate genes in spring wheat. Plant Genome. doi:10.3835/plantgenome2013.04.0010

    Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Burnt Mill

    Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61:3211–3222. doi:10.1093/jxb/erq152

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann A, Maurer A, Pillen K (2012) Detection of nitrogen deficiency QTL in juvenile wild barley introgression lines growing in a hydroponic system. BMC Genet 13:88. doi:10.1186/1471-2156-13-88

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamoshita A, Wade J, Ali L, Pathan S, Zhang J, Sarkarung S, Nguyen T (2002) Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theor Appl Genet 104:880–893. doi:10.1007/s00122-001-0837-5

    Article  CAS  PubMed  Google Scholar 

  • Kipp S, Mistele B, Baresel P, Schmidhalter U (2014) High-throughput phenotyping early plant vigour of winter wheat. Eur J Agron 52(Part B):271–278. doi:10.1016/j.eja.2013.08.009

    Article  Google Scholar 

  • Landjeva S, Korzun V, Stoimenova E, Truberg B, Ganeva G, Börner A (2008) The contribution of the gibberellin-insensitive semi-dwarfing (rht) genes to genetic variation in wheat seedling growth in response to osmotic stress. J Agric Sci 146:275–286

    Article  CAS  Google Scholar 

  • Li Z, Mu P, Li C, Zhang H, Li Z, Gao Y, Wang X (2005) QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments. Theor Appl Genet 110:1244–1252

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, El-Feki W, Nazemi G, Salvi S, Canè MA, Colalongo MC, Stefanelli S, Tuberosa R (2016) Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J Exp Bot 67:1161–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manschadi AM, Christopher J, Devoil P, Hammer GL (2006) The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol 33:823–837. doi:10.1071/Fp06055

    Article  CAS  Google Scholar 

  • Meister R, Rajani M, Ruzicka D, Schachtman DP (2014) Challenges of modifying root traits in crops for agriculture. Trend Plant Sci 19:779–788

    Article  CAS  Google Scholar 

  • Nyquist WE (1991) Estimation of heritability and prediction of selection response in plant-populations. Crit Rev Plant Sci 10:235–322. doi:10.1080/07352689109382313

    Article  Google Scholar 

  • Ortiz R, Sayre K, Govaerts B, Gupta R, Subbarao G, Ban T, Hodson D, Dixon J, Ortiz-Monasterio I (2008) Climate change: can wheat beat the agriculture? Agric Ecosyst Environ 126:46–58

    Article  Google Scholar 

  • Palomeque L, Liu L-J, Li W, Hedges BR, Cober ER, Smid MP, Lukens L, Rajcan I (2010) Validation of mega-environment universal and specific QTL associated with seed yield and agronomic traits in soybeans. Theor Appl Genet 120:997–1003

    Article  PubMed  Google Scholar 

  • Palta JA, Chen X, Milroy SP, Rebetzke GJ, Dreccer MF, Watt M (2011) Large root systems: are they useful in adapting wheat to dry environments? Funct Plant Biol 38:347. doi:10.1071/fp11031

    Article  Google Scholar 

  • Parent B, Shahinnia F, Maphosa L, Berger B, Rabie H, Chalmers K, Kovalchuk A, Langridge P, Fleury D (2015) Combining field performance with controlled environment plant imaging to identify the genetic control of growth and transpiration underlying yield response to water-deficit stress in wheat. J Exp Bot 66:5481–5492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passioura JB (2012) Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol 39:851–859

    Article  Google Scholar 

  • Peng JHH, Sun DF, Nevo E (2011) Domestication evolution, genetics and genomics in wheat. Mol Breed 28:281–301. doi:10.1007/s11032-011-9608-4

    Article  CAS  Google Scholar 

  • Qu Y, Mu P, Zhang H, Chen CY, Gao Y, Tian Y, Wen F, Li Z (2008) Mapping QTLs of root morphological traits at different growth stages in rice. Genetica 133:187–200. doi:10.1007/s10709-007-9199-5

    Article  PubMed  Google Scholar 

  • Rebetzke GJ, Condon AG, Farquhar GD, Appels R, Richards RA (2008) Quantitative trait loci for carbon isotope discrimination are repeatable across environments and wheat mapping populations. Theor Appl Genet 118:123–137. doi:10.1007/s00122-008-0882-4

    Article  CAS  PubMed  Google Scholar 

  • Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177–186

    Article  CAS  PubMed  Google Scholar 

  • Schlenker W, Lobell DB (2010) Robust negative impacts of climate change on african agriculture. Environ Res Lett 5:014010. doi:10.1088/1748-9326/5/1/014010

    Article  Google Scholar 

  • Semagn K, Bjornstad A, Ndjiondjop MN (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5:2540–2568

    CAS  Google Scholar 

  • Semagn K, Bjørnstad Å, Xu Y (2010) The genetic dissection of quantitative traits in crops. Electron J Biotechnol 13:16–17

    Article  Google Scholar 

  • Sharma S, Xu S, Ehdaie B, Hoops A, Close TJ, Lukaszewski AJ, Waines JG (2011) Dissection of QTL effects for root traits using a chromosome arm-specific mapping population in bread wheat. Theor Appl Genet 122:759–769

    Article  PubMed  Google Scholar 

  • Sohail Q, Inoue T, Tanaka H, Eltayeb AE, Matsuoka Y, Tsujimoto H (2011) Applicability of aegilops tauschii drought tolerance traits to breeding of hexaploid wheat. Breed Sci 61:347–357. doi:10.1270/jsbbs.61.347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560. doi:10.1007/s00122-004-1871-x

    Article  CAS  PubMed  Google Scholar 

  • Song J, Braun G, Bevis E, Doncaster K (2006) A simple protocol for protein extraction of recalcitrant fruit tissues suitable for 2-de and ms analysis. Electrophoresis 27:3144–3151. doi:10.1002/elps.200500921

    Article  CAS  PubMed  Google Scholar 

  • Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, Germann M, Orf JH, Lark KG (2001) Soybean response to water. Crop Sci 41:493–509. doi:10.2135/cropsci2001.412493x

    Article  CAS  Google Scholar 

  • Swain S, Wardlow BD, Narumalani S, Rundquist DC, Hayes MJ (2013) Relationships between vegetation indices and root zone soil moisture under maize and soybean canopies in the us corn belt: a comparative study using a close-range sensing approach. Int J Remote Sens 34:2814–2828

    Article  Google Scholar 

  • Tardieu F (2012) Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J Exp Bot 63:25–31. doi:10.1093/jxb/err269

    Article  CAS  PubMed  Google Scholar 

  • Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:347. doi:10.3389/fphys.2012.00347

    Article  PubMed  PubMed Central  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N (2013) Control of root system architecture by deeper rooting 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Vaughn LM, Nguyen HT (2013) The effect of moisture extremes on plant roots and their connections with otherabiotic tresses. In: Crespi M (ed) Root genomics and soil interactions. Wiley, Hoboken

    Google Scholar 

  • Voorrips RE (2002) Mapchart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • VSN International (2014) Genstat 17th edition for windows. VSN International, Hemel Hempstead

    Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2012) Windows QTL cartographer, 2.5th edn. Department of Statistics, North Carolina State University, Raleigh

    Google Scholar 

  • Wasson AP, Richards RA, Chatrath R, Misra SC, Prasad SV, Rebetzke GJ, Kirkegaard JA, Christopher J, Watt M (2012) Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J Exp Bot 63:3485–3498. doi:10.1093/jxb/ers111

    Article  CAS  PubMed  Google Scholar 

  • Wei B, Jing R, Wang C, Chen J, Mao X, Chang X, Jia J (2009) Dreb1 genes in wheat (Triticum aestivum L.): development of functional markers and gene mapping based on snps. Mol Breed 23:13–22. doi:10.1007/s11032-008-9209-z

    Article  CAS  Google Scholar 

  • Williams K, Sorrells ME (2014) Three-dimensional seed size and shape QTL in hexaploid wheat (l.) populations. Crop Sci 54:98–110

    Article  Google Scholar 

  • Wilson PB, Rebetzke GJ, Condon AG (2015) Pyramiding greater early vigour and integrated transpiration efficiency in bread wheat; trade-offs and benefits. Field Crop Res 183:102–110. doi:10.1016/j.fcr.2015.07.002

    Article  Google Scholar 

  • Yan WK, Holland JB (2010) A heritability-adjusted gge biplot for test environment evaluation. Euphytica 171:355–369. doi:10.1007/s10681-009-0030-5

    Article  Google Scholar 

  • Zhang L, Richards R, Condon A, Liu D, Rebetzke G (2014) Recurrent selection for wider seedling leaves increases early biomass and leaf area in wheat (Triticum aestivum L.). J Exp Bot 66(5):1215–1226

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng BS, Yang L, Mao CZ, Huang YJ, Wu P (2008) Mapping QTLs for morphological traits under two water supply conditions at the young seedling stage in rice. Plant Sci 175:767–776. doi:10.1016/j.plantsci.2008.07.012

    Article  CAS  Google Scholar 

  • Zhou WC, Kolb F, Bai GH, Domier L, Boze L, Smith N (2003) Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheat. Plant Breed 122:40–46

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Australian development scholarship funded the study of the first author. We thank Dr Chunji Liu of CSIRO for providing some of the wheat genotypes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Habtamu Ayalew or Guijun Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayalew, H., Liu, H. & Yan, G. Identification and validation of root length QTLs for water stress resistance in hexaploid wheat (Titicum aestivum L.). Euphytica 213, 126 (2017). https://doi.org/10.1007/s10681-017-1914-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1914-4

Keywords

Navigation