, 213:102 | Cite as

Drought stress tolerance in common bean: what about highly cultivated Brazilian genotypes?

  • C. C. Dipp
  • J. A. Marchese
  • L. G. Woyann
  • M. A. Bosse
  • M. H. Roman
  • D. R. Gobatto
  • F. Paludo
  • K. Fedrigo
  • K. K. Kovali
  • T. Finatto


Drought stress on reproductive stages constitute a major problem for common bean (Phaseolus vulgaris L.) production because it affects flowering and pod-filling processes which are highly drought-sensitive. In this study, we used a greenhouse experiment to evaluate the response to drought stress in ten highly cultivated Brazilian genotypes in response to moderate intermittent drought during flowering and pod-filling periods (R7 and R8 stages). Morphological, biochemical, physiological and agronomic traits were used to identify tolerant cultivars and elucidate their strategies to cope this stress. The drought intensity index for the experiment reached 0.63. The cultivar IAC Imperador can be defined as a tolerant cultivar, presenting the lowest grain yield reduction (43%) and a reduced drought susceptibility index (0.65). This cultivar elevated their level of proline in roots under stress, which allowed the osmotic adjustment and the maintenance of an intermediate stomata closure during the day, which maintained the intrinsic WUE stable in NS and DS conditions. In addition, this cultivar was able to mobilize the assimilated carbon for the production of pods and grains, evidenced by the high harvest index and the high grain filling index. In this way, IAC Imperador can be used as a check in breeding programs to identify and select lineages with drought tolerance in common bean.


Phaseolus vulgaris L. Intermittent drought stress Drought susceptibility index Proline Harvest index Physiological parameters 



100 grains dry weight


Abscisic acid


Net CO2 assimilation rate


Leaf internal CO2 concentration


Carbon dioxide


Days after emergency


Drought intensity index




Drought susceptibility index


Drought tolerance index


Transpiration rate


Effective use of water


Number of failed grains per pod


Grain filling index


Geometric mean productivity


Stomatal conductance


Grain yield per plant


Harvest index


Water potential


Intrinsic water use efficiency


Leaf stem ratio


Mean productivity




Number of grains per pod


Number of pods per plant


Randomized complete block design


Water use efficiency


Instantaneous WUE


Yield reduction rate


Yield stability index



The authors are grateful to CNPq, CAPES, Fundação Araucária and UTFPR for financial support.

Author’s contribution

TF, JAM and CCD conceived the study. CCD, MAB, KKK, MHR, DRG, FP, KF, LGW and TF performed the experiment and collected data. CCD, MHR, LGW and TF analysed the data. CCD, TF and LGW wrote the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that the research was conducted in the absence of conflict of interest.

Supplementary material

10681_2017_1893_MOESM1_ESM.docx (114 kb)
Supplementary material 1 (DOCX 115 kb)


  1. Ambachew D, Mekbib F, Asfaw A, Beebe SE, Blair MW (2015) Trait associations in common bean genotypes grown under drought stress and field infestation by BSM bean fly. Crop J 3:305–316. doi: 10.1016/j.cj.2015.01.006 CrossRefGoogle Scholar
  2. Andrade ER, Ribeiro VN, Azevedo CV, Chiorato AF, Williams TC, Carbonell SA (2016) Biochemical indicators of drought tolerance in the common bean (Phaseolus vulgaris). Euphytica 210(2):277–289. doi: 10.1007/s10681-016-1720-4 CrossRefGoogle Scholar
  3. Asfaw A, Blair MW (2014) Quantification of drought tolerance in Ethiopian common bean varieties. Agric Sci 5:124–139. doi: 10.4236/as.2014.52016 Google Scholar
  4. Assefa T, Wu J, Beebe SE, Rao IM, Marcomin D, Claude RJ (2015) Improving adaptation to drought stress in small red common bean: phenotypic differences and predicted genotypic effects on grain yield, yield components and harvest index. Euphytica 203(3):477–489. doi: 10.1007/s10681-014-1242-x CrossRefGoogle Scholar
  5. Bates L, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207CrossRefGoogle Scholar
  6. Beebe SE, Rao IM, Cajiao C, Grajales M (2008) Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci 48:582–592. doi: 10.2135/cropsci2007.07.0404 CrossRefGoogle Scholar
  7. Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA (2013) Phenotyping common beans for adaptation to drought. Front Physiol 4:35. doi: 10.3389/fphys.2013.00035 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Blair MW, Galeano CH, Tovar E, Torres MCM, Castrillon AV, Beebe SE, Rao IM (2012) Development of a Mesoamerican intra-genepool genetic map for quantitative trait loci detection in a drought tolerant × susceptible common bean (Phaseolus vulgaris L.) cross. Mol Breeding 29:71–88. doi: 10.1007/s11032-010-9527-9 CrossRefGoogle Scholar
  9. Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res 112(2):119–123. doi: 10.1016/j.fcr.2009.03.009 CrossRefGoogle Scholar
  10. Blum A (2015) Towards a conceptual ABA ideotype in plant breeding for water limited environments. Funct Plant Biol 42(6):502–513. doi: 10.1071/FP14334 CrossRefGoogle Scholar
  11. Bouslama M, Schapaugh WT (1984) Stress tolerance in soybean: 1. Evaluation of three screening techniques for heat and drought tolerance. Crop Sci 24:933–937CrossRefGoogle Scholar
  12. Boyle RK, McAinsh M, Dodd IC (2016) Stomatal closure of Pelargonium × hortorum in response to soil water deficit is associated with decreased leaf water potential only under rapid soil drying. Physiol Plant 156(1):84–96. doi: 10.1111/ppl.12346 CrossRefPubMedGoogle Scholar
  13. CGIAR—Consultative Group for International Agricultural Research (2016).
  14. Chai Q, Gan Y, Zhao C, Xu HL, Waskom RM, Niu Y, Siddique KH (2016) Regulated deficit irrigation for crop production under drought stress. A review. Agron Sustain Dev 36(1):1–21. doi: 10.1007/s13593-015-0338-6 CrossRefGoogle Scholar
  15. Chiorato AF, Carbonell SAM, Carvalho CRL, Barros VLNPD, Borges WLB, Ticelli M, Gallo PB, Finoto EL, Santos NCBD (2012) ‘IAC IMPERADOR’: early maturity” carioca” bean cultivar. Crop Breed Appl Biotechnol 12(4):297–300. doi: 10.1590/S1984-70332012000400012 CrossRefGoogle Scholar
  16. CONAB (2015) Acompanhamento da safra brasileira de grãos. V-3 Safra 2015/2016—N 3—Terceiro levantamento.
  17. Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Bot 55(407):2447–2460. doi: 10.1093/jxb/erh277 CrossRefPubMedGoogle Scholar
  18. Cruz CD (2013) Genes: a software package for analysis in experimental statistics and quantitative genetics. Acta Sci Agron 35(3):271–276. doi: 10.4025/actasciagron.v35i3.21251 CrossRefGoogle Scholar
  19. Cuellar-Ortiz SM, Arrieta-Montiel MP, Acosta-Gallegos JA, Covarrubias AA (2008) Relationship between carbohydrate partitioning and drought resistance in common bean. Plant, Cell Environ 31(10):1399–1409. doi: 10.1111/j.1365-3040.2008.01853.x CrossRefGoogle Scholar
  20. Darkwa K, Ambachew D, Mohammed H, Asfaw A, Blair MW (2016) Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought stress adaptation in Ethiopia. Crop J 4(5):367–376. doi: 10.1016/j.cj.2016.06.007 CrossRefGoogle Scholar
  21. Daryanto S, Wang L, Jacinthe P-A (2015) Global synthesis of drought effects on food legume production. PLoS ONE 10(6):e0127401. doi: 10.1371/journal.pone.0127401 CrossRefPubMedPubMedCentralGoogle Scholar
  22. FAO (Food and Agriculture Organization of the United Nations) (2015) About the international year of pulses.
  23. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212. doi: 10.1051/agro:2008021 CrossRefGoogle Scholar
  24. Farooq M, Gogoi N, Barthakur S, Baroowa B, Bharadwaj N, Alghamdi SS, Siddique KHM (2016) Drought stress in grain legumes during reproduction and grain filling. J Agro Crop Sci 203(2): 81–102. doi: 10.1111/jac.12169 CrossRefGoogle Scholar
  25. Fernández F, Gepts P, Lopez M (1982) Etapas de desarrollo de la planta de frijol común. Centro Internacional de Agricultura Tropical, CaliGoogle Scholar
  26. Fischer R, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Crop Pasture Sci 29:897–912CrossRefGoogle Scholar
  27. Flexas J (2016) Genetic improvement of leaf photosynthesis and intrinsic water use efficiency in C3 plants: Why so much little success? Plant Sci 251:155–161. doi: 10.1016/j.plantsci.2016.05.002 CrossRefPubMedGoogle Scholar
  28. Gupta K, Dey A, Gupta B (2013) Plant polyamines in abiotic stress responses. Acta Physiol Plant 35(7):2015–2036. doi: 10.1007/s11738-013-1239-4 CrossRefGoogle Scholar
  29. Heinemann AB, Ramirez-Villegas J, Souza TLP, Didonet AD, Di Stefano JG, Boote KJ, Jarvis A (2016) Drought impact on rainfed common bean production areas in Brazil. Agric For Meteorol 225:57–74. doi: 10.1016/j.agrformet.2016.05.010 CrossRefGoogle Scholar
  30. Kijne JW, Barker R, Molden DJ (eds) (2003) Water productivity in agriculture: limits and opportunities for improvement. CABI, London, p 332Google Scholar
  31. Kishor K, Polavarapu B, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell Environ 37(2):300–311. doi: 10.1111/pce.12157 CrossRefGoogle Scholar
  32. Lanna AC, Mitsuzono ST, Terra TGR, Vianello RP, de Figueiredo Carvalho MA (2016) Physiological characterization of common bean (Phaseolus vulgaris L.) genotypes, water-stress induced with contrasting response towards drought. Aust J Crop Sci 10(1):1Google Scholar
  33. Levitt J (1972) Responses of plants to environmental stresses. Academic Press, New York, p 698Google Scholar
  34. Medrano H, Tomás M, Martorell S, Flexas J, Hernández E, Rosselló J, Pou A, Escalona J-M, Bota J (2015) From leaf to whole-plant water use efficiency (WUE) in complex canopies: limitations of leaf WUE as a selection target. Crop J 3(3):220–228. doi: 10.1016/j.cj.2015.04.002 CrossRefGoogle Scholar
  35. Moda-Cirino V, Oliari L, Lollato MA, Fonseca Júnior NS (2001) IPR88 Uirapuru -common bean. Crop Breed Appl Biotechnol 1:205–206CrossRefGoogle Scholar
  36. Molina JC, Moda-Cirino V, Júnior NDSF, Faria RT, Destro D (2001) Response of common bean cultivars and lines to water stress. Crop Breed Appl Biotechnol 1(4):363–372CrossRefGoogle Scholar
  37. Müller BSF, Sakamoto T, Silveira RDD, Zambussi-Carvalho PF, Pereira M, Pappas GJ Jr, Costa MMC, Guimarães CM, Pereira WJ, Brondani C, Vianello-Brondani RP (2014) Differentially expressed genes during flowering and grain filling in common bean (Phaseolus vulgaris) grown under drought stress conditions. Plant Mol Biol Report 32(2):438–451. doi: 10.1007/s11105-013-0651-7 CrossRefGoogle Scholar
  38. Muñoz-Perea CG, Terán H, Allen RG, Wright JL, Westermann DT, Singh SP (2006) Selection for drought resistance in dry bean landraces and cultivars. Crop Sci 46(5):2111–2120. doi: 10.2135/cropsci2006.01.0029 CrossRefGoogle Scholar
  39. Mwenye OJ, van Rensburg L, van Biljon A, van der Merwe R (2016) The role of proline and root traits on selection for drought stress tolerance in soybeans: a review. S Afr J Plant Soil 33(4):1–12. doi: 10.1080/02571862.2016.1148786 CrossRefGoogle Scholar
  40. Namugwanya M, Tenywa JS, Otabbong E, Mubiru DN, Masamba TA (2014) Development of common bean (Phaseolus vulgaris L.) production under low soil phosphorus and drought in Sub-Saharan Africa: a review. J Sustain Dev 7(5):128. doi: 10.5539/jsd.v7n5p128 CrossRefGoogle Scholar
  41. Nezhadahmadi A, Prodhan ZH, Faruq G (2013) Drought tolerance in wheat. Sci World J. doi: 10.1155/2013/610721 Google Scholar
  42. Omae H, Kumar A, Shono M (2012) Adaptation to high temperature and water deficit in the common bean (Phaseolus vulgaris L.) during the reproductive period. J Bot. Article ID 803413. doi: 10.1155/2012/803413
  43. Oya T, Nepomucemo AL, Neumaier N, Farias JRB, Tobita S, Ito O (2004) Drought tolerance characteristics of Brazilian soybean cultivars: evaluation and characterization of drought tolerance of various Brazilian soybean cultivars in the field. Plant Prod Sci 7(2):129–137CrossRefGoogle Scholar
  44. Pérez-Vega JC, Blair MW, Monserrate F, Ligarreto GM (2011) Evaluation of an Andean common bean reference collection under drought stress. Agronomía Colombiana 29(1):17–26Google Scholar
  45. Polania JA, Poschenrieder C, Beebe S, Rao IM (2016a) Effective use of water and increased dry matter partitioned to grain contribute to yield of common bean improved for drought resistance. Front Plant Sci. doi: 10.3389/fpls.2016.00660 PubMedPubMedCentralGoogle Scholar
  46. Polania J, Rao IM, Cajiao C, Rivera M, Raatz B, Beebe S (2016b) Physiological traits associated with drought resistance in Andean and Mesoamerican genotypes of common bean (Phaseolus vulgaris L.). Euphytica 210(1):17–29. doi: 10.1007/s10681-016-1691-5 CrossRefGoogle Scholar
  47. Ramirez-Vallejo P, Kelly JD (1998) Traits related to drought resistance in common bean. Euphytica 99:127–136CrossRefGoogle Scholar
  48. Rao DE, Chaitanya KV (2016) Photosynthesis and antioxidative defense mechanisms in deciphering drought stress tolerance of crop plants. Biol Plant 60(2):201–218. doi: 10.1007/s10535-016-0584-8 CrossRefGoogle Scholar
  49. Rao I, Beebe S, Polania J, Ricaurte J, Cajiao C, Garcia R, Rivera M (2013) Can tepary bean be a model for improvement of drought resistance in common bean? Afr Crop Sci J 21:265–281Google Scholar
  50. Rosales MA, Ocampo E, Rodríguez-Valentín R, Olvera-Carrillo Y, Acosta-Gallegos J, Covarrubias AA (2012) Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant Physiol Biochem 56:24–34. doi: 10.1016/j.plaphy.2012.04.007 CrossRefPubMedGoogle Scholar
  51. Rosales MA, Cuellar-Ortiz SM, Arrieta-Montiel MP, Acosta-Gallegos J, Covarrubias AA (2013) Physiological traits related to terminal drought resistance in common bean (Phaseolus vulgaris L.). J Sci Food Agric 93:324–331. doi: 10.1002/jsfa.5761 CrossRefPubMedGoogle Scholar
  52. Rosielle AA, Hamblin J (1981) Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci 21(6):943–946CrossRefGoogle Scholar
  53. Scholander P, Hammel H, Bradstreet EY, Hemmingsen E (1965) Sap pressure in vascular plants. Science 148:339–346CrossRefPubMedGoogle Scholar
  54. Silvente S, Sobolev AP, Lara M (2012) Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. PLoS ONE 7(6):e38554. doi: 10.1371/journal.pone.0038554 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Singh SP, Teran H, Gutierrez AJ (2001) Registration of SEA 5 and SEA 13 drought tolerant dry bean germplasm. Crop Sci 41(1):276CrossRefGoogle Scholar
  56. Singh S, Tripathi DK, Dubey NK, Chauhan DK (2016) Global explicit profiling of water deficit-induced diminutions in agricultural crop sustainability: key emerging trends and challenges., Water stress and crop plants: a sustainable approachWiley, ChichesterCrossRefGoogle Scholar
  57. Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97. doi: 10.1016/j.tplants.2009.11.009 CrossRefPubMedGoogle Scholar
  58. Szilagyi L (2003) Influence of drought on seed yield components in common bean. Bulg J Plant Physiol 9:320–330Google Scholar
  59. Terán H, Singh SP (2002) Selection for drought resistance in early generations of common bean populations. Can J Plant Sci 82(3):491–497. doi: 10.4141/P01-134 CrossRefGoogle Scholar
  60. Tombesi S, Nardini A, Tommaso F, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A (2016) Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Sci Rep 5:12449. doi: 10.1038/srep12449 CrossRefGoogle Scholar
  61. Villordo-Pineda E, González-Chavira MM, Giraldo-Carbajo P, Acosta-Gallegos JA, Caballero-Pérez J (2015) Identification of novel drought-tolerant-associated SNPs in common bean (Phaseolus vulgaris). Front Plant Sci. doi: 10.3389/fpls.2015.00546 PubMedPubMedCentralGoogle Scholar
  62. Voleníková M, Tichá I (2001) Insertion profiles in stomatal density and sizes in Nicotiana tabacum L. plantlets. Biol Plant 44:161–165CrossRefGoogle Scholar
  63. White JW, Castillo JA (1992) Evaluation of diverse shoot genotypes on selected root genotypes of common bean under soil water deficits. Crop Sci 32:762–765CrossRefGoogle Scholar
  64. Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant, Cell Environ 33(4):510–525. doi: 10.1111/j.1365-3040.2009.02052.x CrossRefGoogle Scholar
  65. Zadražnik T, Hollung K, Egge-Jacobsen W, Meglič V, Šuštar-Vozlič J (2013) Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J Proteomics 78:254–272. doi: 10.1016/j.jprot.2012.09.021 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Departamento Acadêmico de Ciências AgráriasUniversidade Tecnológica Federal do Paraná - Câmpus Pato BrancoPato BrancoBrazil
  2. 2.Programa de Pós-Graduação em AgronomiaUniversidade Tecnológica Federal do Paraná - Câmpus Pato BrancoPato BrancoBrazil

Personalised recommendations