, 213:7 | Cite as

Mapping quantitative trait loci controlling fatty acid composition in olive

  • M. L. Hernández
  • A. Belaj
  • M. D. Sicardo
  • L. León
  • R. de la Rosa
  • A. Martín
  • J. M. Martínez-Rivas
  • S. G. Atienza


Fatty acids are the main components of the olive oil and their composition has a critical influence on the oil quality. However, oil quality evaluation has not been frequently included in the selection of new bred cultivars. This can be due to the difficulties in analyzing oil quality in large set of genotypes and also to the long juvenile period of olive seedlings. Therefore, the identification of molecular markers associated to olive oil quality traits could facilitate their selection in breeding programs of this species. In the present work, the identification of the first QTLs for fatty acids on olive oil is reported. They have been located in a linkage map of a ‘Picual’ × ‘Arbequina’ progeny of the olive breeding program of Córdoba. Correlations among fatty acids are in agreement with previous reports of breeding progenies. QTLs found for oleic and linoleic acids explained 41.1 and 69.7% of the total variability, respectively, and were co-localized in the same linkage groups. In the same region, QTLs for monounsaturated, polyunsaturated and oleic/linoleic ratio were also identified. In other linkage groups, three QTLs for linolenic and one for palmitoleic acid were also located explaining 15.0–28.0% of the total variability. These results could be useful to increase the efficiency of breeding programs aimed at selecting new cultivars with high oleic acid content, and, therefore, with enhanced nutritional properties and oxidative stability of the olive oil.


Olea europaea L. Breeding QTL Olive oil Oleic acid 



This work was partly supported by OLEAGEN Project funded by the Fundación Genoma España, Junta de Andalucía through Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) and Corporación Tecnológica de Andalucía (CTA).

Supplementary material

10681_2016_1802_MOESM1_ESM.docx (227 kb)
Supplementary material 1 (DOCX 227 kb)


  1. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2003a) Identification of QTLs influencing agronomic traits in Miscanthus sinensis Anderss. I. Total height, flag-leaf height and stem diameter. Theor Appl Genet 107:123–129CrossRefPubMedGoogle Scholar
  2. Atienza SG, Satovic Z, Petersen KK, Dolstra O, Martin A (2003b) Identification of QTLs influencing combustion quality in Miscanthus sinensis Anderss. II. Chlorine and potassium content. Theor Appl Genet 107:857–863CrossRefPubMedGoogle Scholar
  3. Atienza SG, De la Rosa R, Leon L, Martin A, Belaj A (2014) Identification of QTL for agronomic traits of importance for olive breeding. Mol Breed 34:725–737. doi: 10.1007/s11032-014-0070-y Google Scholar
  4. Banilas G, Moressis A, Nikoloudakis N, Hatzopoulos P (2005) Spatial and temporal expressions of two distinct oleate desaturases from olive (Olea europea L.). Plant Sci 168:547–555CrossRefGoogle Scholar
  5. Banilas G, Nikiforiadis A, Makariti I, Moressis A, Hatzopoulos P (2007) Discrete roles of a microsomal linoleate desaturase gene in olive identified by spatiotemporal transcriptional analysis. Tree Physiol 27:481–490CrossRefPubMedGoogle Scholar
  6. Barranco D, Fernandez-Escobar R, Rallo L (2010) Olive growing. Pendle Hill, AustraliaGoogle Scholar
  7. Bellini E, Parlati MV, Giordani E (2002) Three new olive cultivars obtained by cross-breeding. Acta Hortic 586:221–223Google Scholar
  8. Ben Sadok I, Celton J-M, Essalouh L, El Aabidine AZ, Garcia G, Martinez S, Grati-Kamoun N, Rebai A, Costes E, Khadari B (2013) QTL mapping of flowering and fruiting traits in olive. PLoS ONE 8:e62831CrossRefPubMedGoogle Scholar
  9. Bonow RO, Eckel RH (2003) Diet, obesity, and cardiovascular risk. N Engl J Med 348:2057–2058. doi: 10.1056/NEJMp030053 CrossRefPubMedGoogle Scholar
  10. Bracci T, Busconi M, Fogher C, Sebastiani L (2011) Molecular studies in olive (Olea europaea L.): overview on DNA markers applications and recent advances in genome analysis. Plant Cell Rep 30:449–462CrossRefPubMedGoogle Scholar
  11. Cahoon EB, Shah S, Shanklin J, Browse J (1998) A determinant of substrate specificity predicted from the acyl-acyl carrier protein desaturase of developing cat’s claw seed. Plant Physiol 117:593–598CrossRefPubMedPubMedCentralGoogle Scholar
  12. Carlsson AS, LaBrie ST, Kinney AJ, Von Wettstein-Knowles P, Browse J (2002) A KAS2 cDNA complements the phenotypes of the Arabidopsis fab1 mutant that differs in a single residue bordering the substrate binding pocket. Plant J 29:761–770. doi: 10.1046/j.1365-313X.2002.01253.x CrossRefPubMedGoogle Scholar
  13. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971PubMedPubMedCentralGoogle Scholar
  14. Conneally PM, Edwards JH, Kidd KK, Lalouel J-M, Morton NE, Ott J, White R (1985) Report of the committee on methods of linkage analysis and reporting. Cytogenet Cell Genet 40:356–359CrossRefPubMedGoogle Scholar
  15. Covas MI (2008) Bioactive effects of olive oil phenolic compounds in humans: reduction of heart disease factors and oxidative damage. Inflammopharmacology 16:216–218. doi: 10.1007/s10787-008-8019-6 CrossRefPubMedGoogle Scholar
  16. Dabbou S, Rjiba I, Echbili A, Gazzah N, Mechri B, Hammami M (2010) Effect of controlled crossing on the triglyceride and fatty acid composition of virgin olive oils. Chem Biodivers 7:1801–1813. doi: 10.1002/cbdv.200900385 CrossRefPubMedGoogle Scholar
  17. Dabbou S, Chaieb I, Rjiba I, Issaoui M, Echbili A, Nakbi A, Gazzah N, Hammami M (2012) Multivariate data analysis of fatty acid content in the classification of olive oils developed through controlled crossbreeding. J Am Oil Chem 89:667–674. doi: 10.1007/s11746-011-1946-1 CrossRefGoogle Scholar
  18. Dabbou S, Chehab H, Taticchi A, Servili M, Hammami M (2015) Content of fatty acids and phenolics in coratina olive oil from tunisia: influence of irrigation and ripening. Chem Biodivers 12:397–406. doi: 10.1002/cbdv.201400142 CrossRefPubMedGoogle Scholar
  19. De la Rosa R, Kiran AI, Barranco D, Leon L (2006) Seedling vigour as a preselection criterion for short juvenile period in olive breeding. Aust J Agric Res 57:477–481. doi: 10.1071/ar05219 CrossRefGoogle Scholar
  20. De la Rosa R, Arias-Calderón R, Velasco L, León L (2016) Early selection for oil quality components in olive breeding progenies. Eur J Lipid Sci Technol 118:1160–1167. doi: 10.1002/ejlt.201500425 CrossRefGoogle Scholar
  21. Di Bella G, Maisano R, La Pera L, Lo Turco V, Salvo F, Dugo G (2007) Statistical characterization of sicilian olive oils from the Peloritana and Maghrebian zones according to the fatty acid profile. J Agric Food Chem 55:6568–6574. doi: 10.1021/jf070523r CrossRefPubMedGoogle Scholar
  22. Dominguez-Garcia MC, Belaj A, De la Rosa R, Satovic Z, Heller-Uszynska K, Kilian A, Martin A, Atienza SG (2012) Development of DArT markers in olive (Olea europaea L.) and usefulness in variability studies and genome mapping. Sci Hortic. doi: 10.1016/j.scienta.2011.12.017 Google Scholar
  23. EC (2007) European commission regulation. No. 702/2007. (2007). Official Journal of European Community, L 161, June 21th, pp 11–27Google Scholar
  24. El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MGM (2014) Genotype × environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends Plant Sci 19:390–398. doi: 10.1016/j.tplants.2014.01.001 CrossRefPubMedGoogle Scholar
  25. FAOSTAT (2013) Food and Agriculture Organization or the United Nations, Statistics division.
  26. Font i Forcada C, Fernández i Martí A, Socias i Company R (2012) Mapping quantitative trait loci for kernel composition in almond. BMC Genet 13:47CrossRefPubMedGoogle Scholar
  27. Frías L, García-Ortiz A, hermoso M, Jiménez A, Llavero del Pozo MP, Morales J, Ruano T, Uceda M (1991) Analistas de laboratorio de almazara. Inf Téc 6:91Google Scholar
  28. Garces R, Mancha M (1993) One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal Biochem 211:139–143. doi: 10.1006/abio.1993.1244 CrossRefPubMedGoogle Scholar
  29. Gibson KJ (1993) Palmitoleate formation by soybean stearoyl-acyl carrier protein desaturase. Biochim Bioph Acta 1169:231–235. doi: 10.1016/0005-2760(93)90245-5 CrossRefGoogle Scholar
  30. Grattapaglia D, Bertolucci FL, Sederoff RR (1995) Genetic mapping of QTLs controlling vegetative propagation in Eucalyptus grandis and E. urophylla using a pseudo-testcross strategy and RAPD markers. Theor Appl Genet 90:930–947CrossRefGoogle Scholar
  31. Gunstone FD (1992) Fatty acid structure. In: Gunstone FD, Harwood JL, Padley FB (eds) The lipid handbook, 2nd edn. Chapman and Hall, London, pp 1–19Google Scholar
  32. Gutiérrez F, Jímenez B, Ruíz A, Albi MA (1999) Effect of olive ripeness on the oxidative stability of virgin olive oil extracted from the varieties picual and hojiblanca and on the different components involved. J Agric Food Chem 47:121–127. doi: 10.1021/jf980684i CrossRefPubMedGoogle Scholar
  33. Haralampidis K, Milioni D, Sanchez J, Baltrusch M, Heinz E, Hatzopoulos P (1998) Temporal and transient expression of stearoyl-ACP carrier protein desaturase gene during olive fruit development. J Exp Bot 49:1661–1669CrossRefGoogle Scholar
  34. Harwood JL (2005) Fatty acid biosynthesis. In: Murphy DJ (ed) Plant lipids. Blackwell Publishing, Oxford, pp 27–101Google Scholar
  35. Hayatsu H, Arimoto S, Negishi T (1988) Dietary inhibitors of mutagenesis and carcinogenesis. Mutat Res—Fundam Mol Mech Mutagen 202:429–446. doi: 10.1016/0027-5107(88)90204-7 CrossRefGoogle Scholar
  36. Hernandez ML, Mancha M, Martinez-Rivas JM (2005) Molecular cloning and characterization of genes encoding two microsomal oleate desaturases (FAD2) from olive. Phytochemistry 66:1417–1426. doi: 10.1016/j.phytochem.2005.04.004 CrossRefPubMedGoogle Scholar
  37. Hernandez ML, Guschina IA, Martinez-Rivas JM, Mancha M, Harwood JL (2008) The utilization and desaturation of oleate and linoleate during glycerolipid biosynthesis in olive (Olea europaea L.) callus cultures. J Exp Bot 59:2425–2435. doi: 10.1093/jxb/ern121 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hernandez ML, Padilla MN, Mancha M, Martinez-Rivas JM (2009) Expression analysis identifies FAD2-2 as the olive oleate desaturase gene mainly responsible for the linoleic acid content in virgin olive oil. J Agric Food Chem 57:6199–6206. doi: 10.1021/jf900678z CrossRefPubMedGoogle Scholar
  39. Hernández ML, Padilla MN, Sicardo MD, Mancha M, Martínez-Rivas JM (2011) Effect of different environmental stresses on the expression of oleate desaturase genes and fatty acid composition in olive fruit. Phytochemistry 72:178–187. doi: 10.1016/j.phytochem.2010.11.026 CrossRefPubMedGoogle Scholar
  40. Hernández ML, Sicardo MD, Martínez-Rivas JM (2016) Differential contribution of endoplasmic reticulum and chloroplast ω-3 fatty acid desaturase genes to the linolenic acid content of olive (Olea europaea) fruit. Plant Cell Physiol 57:138–151. doi: 10.1093/pcp/pcv159 CrossRefPubMedGoogle Scholar
  41. Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211PubMedPubMedCentralGoogle Scholar
  42. Jansen RC (1994) Controlling the type I and type II errors in mapping quantitative trait loci. Genetics 138:871–881PubMedPubMedCentralGoogle Scholar
  43. Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455PubMedPubMedCentralGoogle Scholar
  44. Jimenez Herrera B, Rivas Velasco A, Sanchez-Ortiz A, Lorenzo Tovar ML, Ubeda Munoz M, Callejon RM, Bernaldo Ortega, de Ouiros E (2012) Influence of fruit maturation process on the sensory quality of virgin olive oils from Picual, Hojiblanca and Picudo cultivars. Grasas Aceites 63:403–410. doi: 10.3989/gya.058212 CrossRefGoogle Scholar
  45. Knott SA, Neale DB, Sewell MM, Haley CS (1997) Multiple marker mapping of quantitative trait loci in an outbred pedigree of loblolly pine. Theor Appl Genet 94:810–820CrossRefGoogle Scholar
  46. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedPubMedCentralGoogle Scholar
  47. Lavee S, Haskal A, Wodner M (1986) ‘Barnea’ a new olive cultivar from first breeding generation. Olea 17:95–99Google Scholar
  48. Lavee S, Harshemesh H, Haskal A, Trapero A, Metzidakis IT, Voyiatzis DG (1999) ‘Maalot’ a new cultivar for oil extraction resistant to Spilocaea oleagina (Cast). Acta Hortic 474:125–128CrossRefGoogle Scholar
  49. Lavee S, Avidan B, Meni Y (2003) ‘Askal’, a new high-performing oil variety for intensive and super-intensive olive orchards. Olivae 97:7Google Scholar
  50. Leon L, Martin LM, Rallo L (2004) Phenotypic correlations among agronomic traits in olive progenies. J Am Soc Hortic Sci 129:271–276Google Scholar
  51. Leon L, De la Rosa R, Gracia A, Barranco D, Rallo L (2008) Fatty acid composition of advanced olive selections obtained by crossbreeding. J Sci Food Agric 88:1921–1926CrossRefGoogle Scholar
  52. León L, Uceda M, Jiménez A, Martín LM, Rallo L (2004) Variability of fatty acid composition in olive (Olea europaea L.) progenies. Span J Agric Res 2:353–359CrossRefGoogle Scholar
  53. Li X, Quigg RJ, Zhou J, Xu SS, Masinde G, Mohan S, Baylink DJ (2006) A critical evaluation of the effect of population size and phenotypic measurement on QTL detection and localization using a large F2 murine mapping population. Genet Mol Biol 29:166–173CrossRefGoogle Scholar
  54. Liu P, Wang CM, Li L, Sun F, Liu P, Yue GH (2011) Mapping QTLs for oil traits and eQTLs for oleosin genes in Jatropha. BMC Plant Biol 11:132. doi: 10.1186/1471-2229-11-132 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY (2001) Distinct effects of saturated and monounsaturated fatty acids on β-cell turnover and function. Diabetes 50:69–76CrossRefPubMedGoogle Scholar
  56. Martinez-Suarez JM, Muñoz-Arnada E, Alba-Mendoza J, Lanzón-Rey A (1975) Report about the use of the ‘Abencor’ yields analyser. Grasas Aceites 26:379–385Google Scholar
  57. Montoya C, Lopes R, Flori A, Cros D, Cuellar T, Summo M, Espeout S, Rivallan R, Risterucci AM, Bittencourt D, Zambrano JR, Alarcon WH, Villeneuve P, Pina M, Nouy B, Amblard P, Ritter E, Leroy T, Billotte N (2013) Quantitative trait loci (QTLs) analysis of palm oil fatty acid composition in an interspecific pseudo-backcross from Elaeis oleifera (HBK) Cortes and oil palm (Elaeis guineensis Jacq.). Tree Genet Genomes 9:1207–1225. doi: 10.1007/s11295-013-0629-5 CrossRefGoogle Scholar
  58. Montoya C, Cochard B, Flori A, Cros D, Lopes R, Cuellar T, Espeout S, Syaputra I, Villeneuve P, Pina M, Ritter E, Leroy T, Billotte N (2014) Genetic architecture of palm oil fatty acid composition in cultivated oil palm (Elaeis guineensis Jacq.) compared to its wild relative E. oleifera (H.B.K) Cortés. PLoS ONE 9:e95412. doi: 10.1371/journal.pone.0095412 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Olías JM, Pérez AG, Ríos JJ, Sanz LC (1993) Aroma of virgin olive oil: biogenesis of the “green” odor notes. J Agric Food Chem 41:2368–2373CrossRefGoogle Scholar
  60. Pérez AG, León L, Pascual M, Romero-Segura C, Sánchez-Ortiz A, La De, Rosa R, Sanz C (2014) Variability of virgin olive oil phenolic compounds in a segregating progeny from a single cross in Olea europaea L. and sensory and nutritional quality implications. PLoS ONE 9:e92898CrossRefPubMedPubMedCentralGoogle Scholar
  61. Pérez-Vich B, Knapp SJ, Leon AJ, Fernández-Martínez JM, Berry ST (2004) Mapping minor QTL for increased stearic acid content in sunflower seed oil. Mol Breed 13:313–322. doi: 10.1023/B:MOLB.0000034081.40930.60 CrossRefGoogle Scholar
  62. Poghosyan ZP, Haralampidis K, Martsinkovskaya AI, Murphy DJ, Hatzopoulos P (1999) Developmental regulation and spatial expression of a plastidial fatty acid desaturase from Olea europaea. Plant Physiol Biochem 37:109–119CrossRefGoogle Scholar
  63. Quintero-Florez A, Sinausia Nieva L, Sanchez-Ortiz A, Beltran G, Perona JS (2015) The fatty acid composition of virgin olive oil from different cultivars is determinant for foam cell formation by macrophages. J Agric Food Chem 63:6731–6738. doi: 10.1021/acs.jafc.5b01626 CrossRefPubMedGoogle Scholar
  64. Rallo L, Barranco D, De la Rosa R, Leon L (2008) ‘Chiquitita’ olive. HortScience 43:3Google Scholar
  65. Rietjens SJ, Bast A, Haenen GRMM (2007) New insights into controversies on the antioxidant potential of the olive oil antioxidant hydroxytyrosol. J Agric Food Chem 55:7609–7614. doi: 10.1021/jf0706934 CrossRefPubMedGoogle Scholar
  66. Rondanini DP, Castro DN, Searles PS, Rousseaux MC (2011) Fatty acid profiles of varietal virgin olive oils (Olea europaea L.) from mature orchards in warm arid valleys of Northwestern Argentina (La Rioja). Grasas Aceites 62:399–409. doi: 10.3989/gya.125110 CrossRefGoogle Scholar
  67. Rotondi A, Magli M, Morrone L, Alfei B, Pannelli G (2013) Italian national database of mono varietal extra virgin olive oils. The Mediterranean genetic code—grapevine and olive. Intech Open Access Publisher, RijekaGoogle Scholar
  68. Sabetta W, Blanco A, Zelasco S, Lombardo L, Perri E, Mangini G, Montemurro C (2013) Fad7 gene: identification and fatty acids phenotypic variation in an olive collection by EcoTILLING and sequencing approaches. Plant Physiol Biochem 69:1–8. doi: 10.1016/j.plaphy.2013.04.007 CrossRefPubMedGoogle Scholar
  69. Santos-Antunes AF, León L, De la Rosa R, Alvarado J, Mohedo A, Trujillo I, Rallo L (2005) The length of the juvenile period in olive as influenced by vigor of the seedlings and the precocity of the parents. HortScience 40:1213–1215Google Scholar
  70. Schwingshackl L, Hoffmann G (2014) Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids Health Dis 13:154CrossRefPubMedPubMedCentralGoogle Scholar
  71. Sewell MM, Bassoni DL, Megraw RA, Wheeler NC, Neale DB (2000) Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). Physical wood properties. Theor Appl Genet 101:1273–1281CrossRefGoogle Scholar
  72. Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Ann Rev Plant Physiol Plant Mol Biol 49:611–641. doi: 10.1146/annurev.arplant.49.1.611 CrossRefGoogle Scholar
  73. Singh R, Tan SG, Panandam JM, Rahman RA, Ooi LCL, Low E-TL, Sharma M, Jansen J, Cheah S-C (2009) Mapping quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm. BMC Plant Biol 9:114. doi: 10.1186/1471-2229-9-114 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Socquet-Juglard D, Duffy B, Pothier JF, Christen D, Gessler C, Patocchi A (2013) Identification of a major QTL for Xanthomonas arboricola pv. pruni resistance in apricot. Tree Genet Genomes 9:409–421CrossRefGoogle Scholar
  75. Uceda M, Hermoso JF, García-Ortiz A, Jimenez A, Beltran G (1999) Intraspecific variation of oil contents and the characteristics of oils in olive cultivars. Acta Hortic 474:4Google Scholar
  76. Uceda M, Beltrán G, Jimenez A (2005) Composición del aceite. In: Rallo L, Barranco D, Caballero J et al (eds) Las variedades de olivo cultivadas en España. Libro II. Variabilidad y selección. Junta de Andalucía, MAPA and Ediciones Mundi-Prensa, Madrid, pp 357–372Google Scholar
  77. Vales MI, Schön CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270CrossRefPubMedGoogle Scholar
  78. van Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84:803–811. doi: 10.1007/bf00227388 CrossRefPubMedGoogle Scholar
  79. Van Ooijen JW (2004) MapQTL(R) 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V., WageningenGoogle Scholar
  80. Velasco L, Fernández-Cuesta A, De La Rosa R, Victoria Ruiz-Méndez M, León L (2014) Selection for some olive oil quality components through the analysis of fruit flesh. J Am Oil Chem 91:1731–1736CrossRefGoogle Scholar
  81. Voelker T, Kinney AJ (2001) Variations in the biosynthesis of seed-storage lipids. Ann Rev Plant Biol 52:335–361CrossRefGoogle Scholar
  82. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefPubMedGoogle Scholar
  83. Vos E (2003) Linoleic acid, ‘vitamin F6′- is the western world getting too much? probably. Lipid Technol 15:81–84Google Scholar
  84. Wassom JJ, Mikkelineni V, Bohn MO, Rocheford TR (2008) QTL for fatty acid composition of maize kernel oil in illinois high oil x B73 backcross-derived lines. Crop Sci 48:69–78. doi: 10.2135/cropsci2007.04.0208 CrossRefGoogle Scholar
  85. Were BA, Onkware AO, Gudu S, Welander M, Carlsson AS (2006) Seed oil content and fatty acid composition in East African sesame (Sesamum indicum L.) accessions evaluated over 3 years. Field Crops Res 97:254–260. doi: 10.1016/j.fcr.2005.10.009 CrossRefGoogle Scholar
  86. Ying JZ, Shan JX, Gao JP, Zhu MZ, Shi M, Lin HX (2012) Identification of quantitative trait loci for lipid metabolism in rice seeds. Mol Plant 5:865–875. doi: 10.1093/mp/ssr100 CrossRefPubMedGoogle Scholar
  87. Zhao J, Dimov Z, Becker HC, Ecke W, Möllers C (2008) Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content. Mol Breed 21:115–125. doi: 10.1007/s11032-007-9113-y CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology of Plant ProductsInstituto de la Grasa (CSIC)SevilleSpain
  2. 2.Área Mejora y BiotecnologíaIFAPA-Centro Alameda del ObispoCórdobaSpain
  3. 3.Institute for Sustainable Agriculture, CSICCórdobaSpain

Personalised recommendations