, Volume 212, Issue 3, pp 355–370 | Cite as

Naturally occurring triploid hybrids between Miscanthus sacchariflorus and M. sinensis in Southern Japan, show phenotypic variation in agronomic and morphological traits

  • Naohiro Uwatoko
  • Ken-ichi Tamura
  • Hiroshi Yamashita
  • Mitsuru Gau


Miscanthus × giganteus, a triploid hybrid between tetraploid M. sacchariflorus and diploid M. sinensis, is considered to be a promising biomass crop for producing renewable bioenergy in temperate regions. However, because most cultivars of the hybrid have been derived from a single clone through vegetative propagation, genetic resources with diverse phenotypes are required to allow adaptation to changing environments and resistance to pests and diseases. The present study aimed to identify novel natural hybrids between M. sacchariflorus and M. sinensis and to assess their natural variation in agronomic and morphological traits. We have identified 51 Miscanthus plants with nuclear DNA content of triploid Miscanthus within a 5-km radius of the Kikuchigawa River basin located in southern Japan. Seven spontaneous triploids, including five representative strains in the Kikuchigawa River basin, had the chromosome number and nuclear DNA content comparable with those of triploid M. × giganteus, and showed the amplification of species-specific DNA fragments from both parent species in DNA marker analysis. These demonstrated that these spontaneous strains were natural triploid hybrids. A 2-year-long field experiment in a warm climate revealed that these triploid hybrids showed phenotypic variation in agronomic and morphological traits. In addition, phylogenetic analysis of chloroplast DNA sequences revealed that these triploid hybrids had a polyphyletic origin but that all seven hybrids contained cytoplasm from M. sacchariflorus. The present study suggests that naturally occurring triploid hybrids could be more widely distributed in southern Japan than previously reported and be important breeding resources to develop Miscanthus cultivars with novel characteristic traits.


Biomass crop Genetic resource Miscanthus × giganteus Natural variation Spontaneous triploid hybrid 



The authors thank Dr. Pachakkil Babil and Mr. Yoshifumi Terajima for providing us with a protocol for chromosome observation and Dr. Miki Sakatani and Dr. Naoki Takenouchi for technical support in fluorescence microscopy. The authors also express gratitude to Mr. Hiroyuki Itoh, Ms. Masako Kanetake, Mr. Hiroya Uyeda, Ms. Kiyoko Ohtani, Mr. Koji Takayoshi, Ms. Junko Aizawa, Ms. Junko Kohyama, Dr. Katsuhiro Matsui, Mr. Masaaki Katsura, Dr. Tomoyuki Takai and Mr. Akira Arakawa for their technical assistances and encouragements.

Supplementary material

10681_2016_1760_MOESM1_ESM.docx (4.1 mb)
Supplementary material 1 (DOCX 4193 kb)


  1. Adati S (1958) Studies on the genus Miscanthus with special reference to the Japanese species suitable for breeding purposes as fodder crops. Bull Fac Agric Mie Univ 17:1–112Google Scholar
  2. Adati S, Mitsuishi S (1956) Wild growing forage plants of the Far East, especially Japan, suitable for breeding purposes Part I. Karyological study in Miscanthus (1). Bull Fac Agric Mie Univ 12:1–10Google Scholar
  3. Ahonsi MO, Agindotan BO, William DW, Arundale R, Gray ME, Voigt TB, Bradley A (2010) First report of Pithomyces chartarum causing a leaf blight of Miscanthus × giganteus in Kentucky. Plant Dis 94:480–481CrossRefGoogle Scholar
  4. Ahonsi MO, Ames KA, Gray ME, Bradley CA (2013) Biomass reducing potential and prospective fungicide control of a new leaf blight of Miscanthus × giganteus caused by Leptosphaerulina chartarum. Bioenerg Res 6:737–745CrossRefGoogle Scholar
  5. Anzoua KG, Suzuki K, Fujita S, Toma Y, Yamada T (2015) Evaluation of morphological traits, winter survival and biomass potential in wild Japanese Miscanthus sinensis Anderss. populations in northern Japan. Grassl Sci 61:83–91CrossRefGoogle Scholar
  6. Arnoult S, Mansard M-C, Brancourt-Hulmel M (2015) Early prediction of Miscanthus biomass production and composition based on the first six years of cultivation. Crop Sci 55:1104–1116CrossRefGoogle Scholar
  7. Barney JN, DiTomaso JM (2008) Nonnative species and bioenergy: are we cultivating the next invader? Bioscience 58:64–70CrossRefGoogle Scholar
  8. Clark LV, Brummer JE, Głowacka K, Hall MC, Heo K, Peng J, Yamada T, Yoo JH, Yu CY, Zhao H, Long SP, Sacks EJ (2014) A footprint of past climate change on the diversity and population structure of Miscanthus sinensis. Ann Bot 114:97–107CrossRefPubMedPubMedCentralGoogle Scholar
  9. Clark LV, Stewart JR, Nishiwaki A, Toma Y, Kjeldsen JB, Jørgensen U, Zhao H, Peng J, Yoo JH, Heo K, Yu CY, Yamada T, Sacks EJ (2015) Genetic structure of Miscanthus sinensis and Miscanthus sacchariflorus in Japan indicates a gradient of bidirectional but asymmetric introgression. J Exp Bot 66:4213–4225CrossRefPubMedPubMedCentralGoogle Scholar
  10. Clifton-Brown JC, Lewndowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jørgensen U, Mortensen JV, Riche AB, Schwarz K-U, Tayebi K, Teixeira F (2001) Performance of 15 Miscanthus Genotypes at five sites in Europe. Agron J 93:1013–1019CrossRefGoogle Scholar
  11. Cosentino SL, Patan`e C, Sanzone E, Copani V, Foti S (2007) Effects of soil water content and nitrogen supply on the productivity of Miscanthus × giganteus Greef et Deu. in a Mediterranean environment. Ind Crops Prod 25:75–88CrossRefGoogle Scholar
  12. Covarelli L, Beccari G, Tosi L (2012) Miscanthus rhizome rot: a potential threat for the establishment and the development of biomass cultivations. Biomass Bioenerg 46:263–269CrossRefGoogle Scholar
  13. Dwiyanti MS, Rudolph A, Swaminathan K, Nishiwaki A, Simono Y, Kuwabara S, Matuura H, Nadir M, Moose S, Stewart JR, Yamada T (2013) Genetic analysis of putative triploid Miscanthus hybrids and tetraploid M. sacchariflorus collected from sympatric populations of Kushima. Japan Bioenerg Res 6:486–493CrossRefGoogle Scholar
  14. Ellstrand NC, Whitkus R, Rieseberg LH (1996) Distribution of spontaneous plant hybrids. Proc Natl Acad Sci USA 93:5090–5093CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fukui K, Iijima K (1991) Somatic chromosome map of rice by imaging methods. Theor Appl Genet 81:589–596CrossRefPubMedGoogle Scholar
  16. Gauder M, Graeff-Hönninger S, Lewandowski I, Claupein W (2012) Long-term yield and performance of 15 different Miscanthus genotypes in southwest Germany. Ann Appl Biol 160:126–136CrossRefGoogle Scholar
  17. Głowacka K, Clark LV, Adhikari S, Peng J, Stewart JR, Nishiwaki A, Yamada T, Jørgensen U, Hodkinson TR, Gifford J, Juvik JA, Sacks EJ (2015) Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones. GCB Bioenerg 7:386–404CrossRefGoogle Scholar
  18. Greef JM, Deuter M (1993) Syntaxonomy of Miscanthus × giganteus Greef-Et-Deu. Angew Bot 67:87–90Google Scholar
  19. Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Change Biol 14:2000–2014CrossRefGoogle Scholar
  20. Hirayoshi I, Nishikawa K, Kubono M, Murase T (1957) Cyto-genetical studies on forage plants (VI) On the chromosome number of Ogi (Miscanthus sacchariflorus). Res Bull Fac Agric Gifu Univ 8:8–13Google Scholar
  21. Hirayoshi I, Nishikawa K, Hakura A (1960) Cyto-genetical studies on forage plants (VIII) 3x– and 4x– hybrid arisen from the cross, Miscanthus sinensis var. condensatus × M. sacchariflorus. Res Bull Fac Agric Gifu Univ 12:82–88Google Scholar
  22. Hodkinson TR, Renvoize S (2001) Nomenclature of Miscanthus × giganteus (Poaceae). Kew Bull 56:759–760CrossRefGoogle Scholar
  23. Hodkinson TR, Renvoize SA, Chase MW (1997) Systematics of Miscanthus. Asp Appl Biol 49:189–198Google Scholar
  24. Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002) The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot 89:279–286CrossRefPubMedGoogle Scholar
  25. Kayama M (2001) Comparison of the Aluminum tolerance of Miscanthus sinensis Anderss. and Miscanthus sacchariflorus Bentham in hydroculture. Int J Plant Sci 162:1025–1031CrossRefGoogle Scholar
  26. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg 25:335–361CrossRefGoogle Scholar
  27. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  28. Matsumura M, Hasegawa T, Saijoh Y (1985) Ecological aspects of Miscanthus sinensis var. condensatus, M. sacchariflorus, and their 3x–, 4x–hybrids (1) Process of vegetative spread. Res Bull Fac Agric Gifu Univ 50:423–433Google Scholar
  29. Matsumura M, Hakumura T, Saijoh Y (1986) Ecological aspects of Miscanthus sinensis var. condensatus, M. sacchariflorus, and their 3x–, 4x–hybrids (2) Growth behavior of the current year’s rhizomes. Res Bull Fac Agric Gifu Univ 51:347–362Google Scholar
  30. Moon Y-H, Cha Y-L, Choi Y-H, Yoon Y-M, Koo B-C, Ahn J-W, An G-H, Kim J-K, Park K-G (2013) Diversity in ploidy levels and nuclear DNA amounts in Korean Miscanthus species. Euphytica 193:317–326CrossRefGoogle Scholar
  31. Naidu SL, Moose SP, AL-Shoaibi AK, Raines CA, Long SP (2003) Cold tolerance of C4 photosynthesis in Miscanthus × giganteus: adaptaion in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol 132:1688–1697CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nishiwaki A, Mizuguti A, Kuwabara S, Toma Y, Ishigaki G, Miyashita T, Yamada T, Matsuura H, Yamaguchi S, Rayburn AL, Akashi R, Stewart JR (2011) Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. Am J Bot 98:154–159CrossRefPubMedGoogle Scholar
  33. Robson P, Jensen E, Hawkins S, White SR, Kenobi K, Clifton-Brown J, Donnison I, Farrar K (2013) Accelerating the domestication of a bioenergy crop: identifying and modelling morphological targets for sustainable yield increase in Miscanthus. J Exp Bot 64:4143–4155CrossRefPubMedPubMedCentralGoogle Scholar
  34. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  35. Shimono Y, Kurokawa S, Nishida T, Ikeda H, Futagami N (2013) Phylogeography based on intraspecific sequence variation in chloroplast DNA of Miscanthus sinensis (Poaceae), a native pioneer grass in Japan. Botany 91:449–456CrossRefGoogle Scholar
  36. Smith LL, Allen DJ, Barney JN (2015) Yield potential and stand establishment for 20 candidate bioenergy feedstocks. Biomass Bioenerg 73:145–154CrossRefGoogle Scholar
  37. Swofford DL (1998) PAUP*: Phylogenetic Analysis Using Parsimony (* and other Methods). Sinauer Associates, SunderlandGoogle Scholar
  38. Tamura K, Sanada Y, Shoji A, Okumura K, Uwatoko N, Anzoua KG, Sacks EJ, Yamada T (2015) DNA markers for identifying interspecific hybrids between Miscanthus sacchariflorus and Miscanthus sinensis. Grassl Sci 61:160–166CrossRefGoogle Scholar
  39. Tamura K, Uwatoko N, Yamashita H, Fujimori M, Akiyama Y, Shoji A, Sanada A, Okumura K, Gau M (2016) Discovery of natural interspecific hybrids between Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan: morphological characterization, genetic structure, and origin. Bioenerg Res 9:315–325CrossRefGoogle Scholar
  40. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  41. Zub HW, Arnoult S, Brancourt-Hulmel M (2011) Key traits for biomass production identified in different Miscanthus species at two harvest dates. Biomass Bioenerg 35:637–651CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Naohiro Uwatoko
    • 1
  • Ken-ichi Tamura
    • 2
  • Hiroshi Yamashita
    • 1
  • Mitsuru Gau
    • 1
  1. 1.Kyusyu Okinawa Agricultural Research CenterNational Agriculture and Food Research Organization (NARO/KARC)KoshiJapan
  2. 2.Hokkaido Agricultural Research CenterNational Agriculture and Food Research Organization (NARO/HARC)SapporoJapan

Personalised recommendations