Skip to main content
Log in

Expression of the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) in cotton improves salinity tolerance and increases seed cotton yield in a saline field

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The emergence and survival of cotton seedlings is crucial for cotton cultivation in saline fields. Limited seed cotton yield in saline fields is also a matter of concern for farmers. The expression of TsVP, a Thellungiella halophila gene encoding a vacuolar proton pumping pyrophosphatase, has been shown to improve the salinity tolerance of transgenic cotton under greenhouse conditions. However, the potential for TsVP to improve the seed cotton yield in saline fields has yet to be evaluated. In this study, the time of emergence, emergence rate, survival rate, carbon assimilation capacity during bud stage, seed cotton yield, and cotton fibre quality were determined in saline field trials using TsVP-overexpressing transgenic cotton and wild-type cotton plants. In a saline field, TsVP-overexpressing transgenic cotton emerged two days earlier than wild-type plants, and displayed greater emergence rate and survival rate. The seed cotton yield of TsVP-overexpressing transgenic cotton plants increased by an average of 14.81 % compared with that of wild-type plants, and cotton fibre quality also improved. In greenhouse conditions, TsVP-overexpressing plants also required a shorter time for 50 % emergence than wild-type plants when the NaCl concentration was greater than 100 mM. This research indicates that TsVP has the potential to improve seed cotton yield in saline fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas G, Khan TM, Farooq J, Mahmood A, Abbas RN, Nazeer W, Farooq A, Hasnain Z, Akhtar MN (2011) Exploring influential plant traits for enhancing upland cotton yield under salt stress. Front Agric China 5:443–449

    Article  Google Scholar 

  • Ahmad S, Khan NUI, Iqbal MZ, Hussain A, Hassan M (2002) Salt tolerance of cotton (Gossypium hirsutum L.). Asian J Plant Sci 6:715–719

    Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  • Ashour NI, Abd-El’Hamid AEHM (1970) Relative salt tolerance of Egyptian cotton varieties during germination and early seedlings development. Plant Soil 33:493–495

  • Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21:1–30

    Article  CAS  Google Scholar 

  • Banjara M, Zhu LF, Shen GX, Payton P, Zhang H (2012) Expression of an Arabidopsis sodium/proton antiporter gene (AtNHX1) in peanut to improve salt tolerance. Plant Biotechnol Rep 6:59–67

    Article  Google Scholar 

  • Bao SD (2000) Agricultural and chemical analysis of soil (in Chinese). China Agriculture Publishing, Beijing

    Google Scholar 

  • Bao AK, Wang SM, Wu GQ, Xi JJ, Zhang JL, Wang CM (2009) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176:232–240

    Article  CAS  Google Scholar 

  • Brugnoli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol 95:628–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Coolbear P, FRANCIS A, Grierson D (1984) The effect of low temperature pre-sowing treatment on the germination performance and membrane integrity of artificially aged tomato seeds. J Exp Bot 35:1609–1617

    Article  CAS  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong HZ, Li WJ, Tang W, Zhang DM (2008) Furrow seeding with plastic mulching increases stand establishment and lint yield of cotton in a saline field. Agron J 100:1640–1646

    Article  Google Scholar 

  • Dong HZ, Li WJ, Tang W, Zhang DM (2009) Early plastic mulching increases stand establishment and lint yield of cotton in saline fields. Field Crop Res 111:269–275

    Article  Google Scholar 

  • Dong HZ, Xin CS, Li WJ (2012) Soil salinity grading of cotton field in coastal saline area. Shandong Agr Sci 44:36–39. (in Chinese)

    Google Scholar 

  • Farooq M, Basra SMA, Ahmad N, Hafeez K (2005) Thermal hardening: a new seed vigor enhancement tool in rice. J Integr Plant Biol 47:187–193

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Ann Bot 115:327–331

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao F, Gao Q, Duan XG, Yue GD, Yang AF, Zhang JR (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57:3259–3270

    Article  CAS  PubMed  Google Scholar 

  • Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci USA 98:11444–11449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo SL, Yin HB, Zhang X, Zhao FY, Li PH, Chen SH, Zhao YX, Zhang H (2006) Molecular cloning and characterization of a vacuolar H+-pyrophos-phatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mole Biol 60:41–50

    Article  CAS  Google Scholar 

  • He CX, Yan JQ, Shen GX, Fu LH, Holaday AS, Auld D, Blumwald E, Zhang H (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46:1848–1854

    Article  CAS  PubMed  Google Scholar 

  • Koyro HW, Hussain T, Huchzermeyer B, Khan MA (2013) Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations. Environ Exp Bot 91:22–29

    Article  CAS  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (2008) Photosynthesis, respiration, and long-distance transport. In: Lambers H (ed) Plant physiological ecology. Springer, New York, pp 11–162

  • Li JS, Yang HB, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek B, Murphy AS, Gilroy S, Gaxiola R (2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 310:121–125

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Baldwin CM, Hu Q, Liu HB, Luo H (2010) Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.). Plant Cell Environ 33:272–289

    Article  CAS  PubMed  Google Scholar 

  • Li XJ, Guo CJ, Gu JT, Duan WW, Zhao M, Ma CY, Du XM, Lu WJ, Xiao K (2014) Overexpression of VP, a vacuolar H+-pyrophosphatase gene in wheat (Triticum aestivum L.), improves tobacco plant growth under Pi and N deprivation, high salinity, and drought. J Exp Bot 65:683–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔ C T method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lv SL, Yin XY, Zhang KW, Zhang JR (2003) Agrobacterium-mediated transformation of shoot apex of cotton and production of transgenic plants carrying betA gene. Chinese High Technology Letters 14:20–25

    Google Scholar 

  • Lv SL, Zhang KW, Gao Q, Lian LJ, Song YJ, Zhang JR (2008) Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49:1150–1164

    Article  CAS  PubMed  Google Scholar 

  • Lv SL, Lian LJ, Tao PL, Li ZX, Zhang KW, Zhang JR (2009) Overexpression of Thellungiella halophila H+-PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta 229:899–910

    Article  CAS  PubMed  Google Scholar 

  • Ma XR, Dong HZ, Li WJ (2011) Genetic improvement of cotton tolerance to salinity stress. Afr J Agr Res 6:6798–6803

    Google Scholar 

  • Mao RZ, Song BC (1997) Salinity indicators of saline soil and the relationship with the chemical composition. Soil 29:326–330. (in Chinese)

    CAS  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    Article  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Naoumkina M, Thyssen GN, Fang DD (2015) RNA-seq analysis of short fiber mutants Ligon-lintless-1 (Li 1 ) and—2 (Li 2 ) revealed important role of aquaporins in cotton (Gossypium hirsutum L.) fiber elongation. BMC Plant Biol 15:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasapula V, Shen GX, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu XY, Zhu LF, Zhou XL, Auld D, Blumwald E, Zhang H, Gaxiola R, Payton P (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9:88–99

    Article  CAS  PubMed  Google Scholar 

  • Plaut Z, Federman E (1991) Acclimation of CO2 assimilation in cotton leaves to water stress and salinity. Plant Physiol 97:515–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin H, Gu Q, Kuppu S, Sun L, Zhu XL, Mishra N, Hu RB, Shen GX, Zhang JL, Zhang YZ, Zhu LF, Zhang XL, Burow M, Payton P, Zhang H (2013) Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 in peanut to improve drought and salt tolerance. Plant Biotechnol Rep 7:345–355

    Article  Google Scholar 

  • Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Schilling RK, Marschner P, Shavrukov Y, Berger B, Tester M, Roy SJ, Plett DC (2014) Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol J 12:378–386

    Article  CAS  PubMed  Google Scholar 

  • Shen GX, Wei J, Qiu XY, Hu RB, Kuppu S, Auld D, Blumwald E, Gaxiola R, Payton P, Zhang H (2015) Co-overexpression of AVP1 and AtNHX1 in cotton further improves drought and salt tolerance in transgenic cotton plants. Plant Mol Biol Rep 33(2):167–177

    Article  CAS  Google Scholar 

  • Smart LB, Vojdani F, Maeshima M, Wilkins TA (1998) Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated. Plant Physiol 116:1539–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudhir P, Murthy SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Yang JS (2008) Development and prospect of the research on salt-affected soils in china. Acta Pedol Sin 45(5):837–845 (in Chinese)

    Google Scholar 

  • Yao M, Zeng Y, Liu L, Huang Y, Zhao E, Zhang F (2012) Overexpression of the halophyte Kalidium foliatum H+-pyrophosphatase gene confers salt and drought tolerance in Arabidopsis thaliana. Mol Biol Rep 39:7989–7996

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Shen G, Kuppu S, Gaxiola R, Payton P (2011a) Creating drought-and salt-tolerant cotton by overexpressing a vacuolar pyrophosphatase gene. Plant Signal Behav 6:861–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Zheng XL, Song SQ, Zeng QW, Hou L, Li DM, Zhan J, Wei Y, Li XB, Luo M, Xiao YH, Luo XY, Zhang JF, Xiang CB, Pei Y (2011b) Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 29:453–458

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Shandong Cotton Research Center for assistance with the HVI SPECTRUM fibre tester. We thank Wu Gao for harvesting seed cotton in the field trial experiments. We also thank Bioedit (Specialized English Editing, Writing and Publisher Services in the Life Sciences) for assistance in language editing. This project was supported by Genetically Modified Organisms Breeding Major Projects (NOs. 2014ZX0800504B-003 and 2014ZX08005-004) and a major projects of the Agricultural Seed Project of Shandong Province (Germplasm innovation for the provision of suitable apheresis and better quality, more resistant to drought and more resistant to salinity cotton).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kewei Zhang.

Additional information

Kewei Zhang and Jiuling Song have contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Song, J., Chen, X. et al. Expression of the Thellungiella halophila vacuolar H+-pyrophosphatase gene (TsVP) in cotton improves salinity tolerance and increases seed cotton yield in a saline field. Euphytica 211, 231–244 (2016). https://doi.org/10.1007/s10681-016-1733-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1733-z

Keywords

Navigation