, Volume 209, Issue 2, pp 461–476 | Cite as

QTL mapping of pearl millet rust resistance using an integrated DArT- and SSR-based linkage map

  • Supriya Ambawat
  • Senapathy Senthilvel
  • Charles T. Hash
  • Thirunavukkarasu Nepolean
  • Vengaldas Rajaram
  • Kankanti Eshwar
  • Rajan Sharma
  • Ram P. Thakur
  • Veeranki P. Rao
  • Ram C. Yadav
  • Rakesh K. Srivastava


Rust, caused by the fungus Puccinia substriata var. indica, is one of the most important production constraints of pearl millet worldwide, leading to grain yield losses of up to 76 % as well as major losses in fodder yield and quality. Here, we report the development of a linkage map integrating Diversity Arrays Technology (DArT) markers and simple sequence repeat (SSR) markers, using this to identify quantitative trait loci (QTLs) for pearl millet rust resistance. Genotyping data from 256 DArT and 70 SSR markers on 168 F7 recombinant inbred lines from cross 81B-P6 × ICMP 451-P8 were used to construct a linkage map comprised of 286 loci (229 DArT and 57 SSR markers) spanning a total length of 740.3 cM (Haldane) with an average adjacent marker distance of 2.7 cM. Linkage group 7 (LG7) (153.5 cM) was the longest and LG6 the shortest (45.0 cM). The map was used to identify a major QTL for rust resistance with an LOD score of 27 on LG1, which explained 58 % of the observed phenotypic variation. In addition, two putative modifiers of small effect were detected, one each on LG4 and LG7. The novel rust resistance QTL identified on LG1 is thought to confer a durable slow-rusting phenotype, which is still effective in India more than 20 years after it was first deployed in the previously popular single-cross hybrid MH 179 (ICMH 451). The flanking markers reported here provide a framework for marker-assisted selection and possible future map-based cloning of this resistance gene.


Pennisetum glaucum Molecular markers Diversity Arrays Technology Linkage map Rust resistance QTL mapping 



This study was supported by the Generation Challenge Programme (GCP) of Consultative Group on International Agricultural Research (CGIAR) and Department of Biotechnology (DBT), Government of India. We thank DArT P/L, Australia, for providing the technical know-how, software and helpful discussion. The authors also acknowledge the help provided by the pathology and pearl millet breeding staff at ICRISAT-Patancheru during greenhouse screening. This work was published as part of the CGIAR Research Program on Dryland Cereals. ICRISAT is a member of the CGIAR Consortium.


  1. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity Arrays Technology (DArT) for high throughput profiling of hexaploid wheat genome. Theor Appl Genet 113:1409–1420CrossRefPubMedGoogle Scholar
  2. Allouis S, Qi X, Lindup S, Gale MD, Devos KM (2001) Construction of a BAC library of pearl millet, Pennisetum glaucum. Theor Appl Genet 102:1200–1205CrossRefGoogle Scholar
  3. Anand Kumar K (1989) Pearl millet: current status and future outlook. Outlook Agric 18:46–53Google Scholar
  4. Andrews DJ, Kumar KA (1992) Pearl millet for food, feed and forage. Adv Agron 48:89–139CrossRefGoogle Scholar
  5. Andrews DJ, Rai KN, Singh SD (1985) A single dominant gene for rust resistance in pearl millet. Crop Sci 25:565–566CrossRefGoogle Scholar
  6. Aparna K, Nepolean T, Srivastava RK, Kholová J, Rajaram V, Kumar S, Rekha B, Sl Senthilve, Hash CT, Vadez V (2015) Quantitative trait loci associated with constitutive traits controlling water use in pearl millet [Pennisetum glaucum (L.) R. Br.]. Plant Biol 17(5):1073–1084. doi: 10.1111/plb.12343 CrossRefPubMedGoogle Scholar
  7. Athwal DS, Gupta VP (1966) Genetic evaluation of grain and fodder quality of Pennisetum. Annual research report 1965–1966. Punjab Agricultural University, LudhianaGoogle Scholar
  8. Azhaguvel P, Hash CT, Rangasamy P, Sharma A (2003) Mapping the d 1 and d 2 dwarfing genes and purple foliage color locus P in pearl millet. J Hered 94:155–159CrossRefPubMedGoogle Scholar
  9. Bertin I, Zhu JH, Gale MD (2005) SSCP-SNP in pearl millet-a new marker system for comparative genetics. Theor Appl Genet 110:1467–1472CrossRefPubMedGoogle Scholar
  10. Bhattacharjee R, Bramel PJ, Hash CT, Kolesnikova-Allen MA, Khairwal IS (2002) Assessment of genetic diversity within and between pearl millet landraces. Theor Appl Genet 105:666–673CrossRefPubMedGoogle Scholar
  11. Bidinger FR, Serraj R, Rizvi SMH, Howarth C, Yadav RS, Hash CT (2005) Field evaluation of drought tolerance QTL effects on phenotype and adaptation in pearl millet [Pennisetum glaucum (L.) R. Br.] topcross hybrids. Field Crops Res 94:14–32CrossRefGoogle Scholar
  12. Bidinger FR, Nepolean T, Hash CT, Yadav RS, Howarth CJ (2007) Quantitative trait loci for grain yield in pearl millet under variable post flowering moisture conditions. Crop Sci 47:969–980CrossRefGoogle Scholar
  13. Breese WA, Hash CT, Devos KM, Howarth CJ (2002) Pearl millet genomics—an overview with respect to breeding for resistance to downy mildew. In: Leslie JF (ed) Sorghum and millets pathology 2000. Iowa State Press, Ames, pp 243–246Google Scholar
  14. Budak H, Pedraza F, Cregan PB, Baenzinger PS, Dweikat I (2003) Development and utilization of SSRs to estimate the degree of genetic relationships in a collection of pearl millet germplasm. Crop Sci 43:2284–2290CrossRefGoogle Scholar
  15. Burton GW, Wilson JP (1995) Identification and transfer of heterotic chromosome blocks for forage yield in short-day exotic pearl millet landraces. Crop Sci 35:1184–1187CrossRefGoogle Scholar
  16. Busso CS, Liu CJ, Hash CT, Witcombe JR, Devos KM, de Wet JMJ, Gale MD (1995) Analysis of recombination rate in female and male gametogenesis in pearl millet (Pennisetum glaucum) using RFLP markers. Theor Appl Genet 90:242–246CrossRefPubMedGoogle Scholar
  17. Busso CS, Devos KM, Ross G, Mortimore M, Adams WM, Ambrose MJ, Alldrick S, Gale MD (2000) Genetic diversity within and among lanfraces of pearl millet (Pennisetum glaucum) under farmer management in West Africa. Genet Resour Crop Evol 47:561–568CrossRefGoogle Scholar
  18. de Carvalho AO, Soares DJ, do Carmo MGF, da Costa ACT, Pimentel C (2006) Description o the life-cycle of the pearl millet rust fungus—Puccinia substriata var. penicillariae with a proposal of reducing var. indica to a synonym. Mycopathologia 161:331–336CrossRefGoogle Scholar
  19. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rept 1:19–21CrossRefGoogle Scholar
  20. Devos KM, Pittaway TS, Reynolds M, Gale MD (2000) Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theor Appl Genet 100:190–198CrossRefGoogle Scholar
  21. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping- by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379. doi: 10.1371/journal.pone.0019379 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fiust A, Rapacz M, Wójcik-Jagła M, Tyrka M (2015) Development of DArT-based PCR markers for selecting drought-tolerant spring barley. J Appl Genet 56:299–309. doi: 10.1007/s13353-015-0273-x CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gale MD, Devos KM, Zhu JH, Allouis S, Couchman MS, Liu H, Pittaway TS, Qi XQ, Kolesnikova-Allen M, Hash CT (2001) New molecular marker technologies for pearl millet improvement. Int Sorghum Millets Newsl 42:16–22Google Scholar
  24. Gemenet DC, Leiser WL, Zangre RG, Angarawai II, Sanogo MD, Sy O, Mahendar T, Hash CT, Haussmann BIG (2015) Association analysis of low-phosphorus tolerance in West African pearl millet using DArT markers. Mol Breed 35:171. doi: 10.1007/s11032-015-0361-y CrossRefGoogle Scholar
  25. Gulia SK, Hash CT, Thakur RP, Breese WA, Sangwan RS (2007) Mapping new QTLs for downy mildew [Sclerospora graminicola (Sacc.) J. Schroet.] resistance in pearl millet (Pennisetum glaucum (L.) R. Br.). In: Singh DP, Tomar VS, Behl RK, Upadhyaya SD, Bhale MS, Khare D (eds) Crop production in stress environments—genetic and management options. Agrobios Publishers, Jodhpur, pp 373–386Google Scholar
  26. Hanna WW, Wells HD, Burton GW (1985) Dominant gene for rust resistance in pearl millet. J Hered 76:134Google Scholar
  27. Hanna WW, Wells HD, Burton GW (1987) Registration of pearl millet inbred parental lines, Tift 85D2A1 and Tift 85D2B1. Crop Sci 25(5):1324–1325CrossRefGoogle Scholar
  28. Hash CT, Witcombe JR (2001) Pearl millet molecular marker research. Int Sorghum Millets Newsl 42:8–15Google Scholar
  29. Hash CT, Witcombe JR (2002) Gene management and breeding for downy mildew resistance. In: Leslie JF (ed) Sorghum and millets pathology 2000. Iowa State Press, Ames, pp 27–36Google Scholar
  30. Hash CT, Bhasker Raj AG, Lindup S, Sharma A, Beniwal CR, Folkertsma RT, Mahalakshmi V, Zerbini E, Blümmel M (2003) Opportunities for marker-assisted selection (MAS) to improve the feed quality of crop residues in pearl millet and sorghum. Field Crops Res 84:79–88CrossRefGoogle Scholar
  31. Hash CT, Sharma A, Kolesnikova-Allen MA, Singh SD, Thakur RP, Bhasker Raj AG, Ratnaji Rao MNV, Nijhawan DC, Beniwal CR, Sagar P, Yadav HP, Yadav YP, Srikant S, Bhatnagar SK, Khairwal IS, Howarth CJ, Cavan GP, Gale MD, Liu C, Devos KM, Breese WA, Witcombe JR (2006) Teamwork delivers biotechnology products to Indian small-holder crop-livestock producers: pearl millet hybrid “HHB 67 Improved” enters seed delivery pipeline. SAT eJournal 2(1):1–3.
  32. Jones ES, Liu CJ, Gale MD, Hash CT, Witcombe JR (1995) Mapping quantitative trait loci for downy mildew resistance in pearl millet. Theor Appl Genet 91:448–456CrossRefPubMedGoogle Scholar
  33. Jones ES, Breese WA, Liu CJ, Singh SD, Shaw DS, Witcombe JR (2002) Mapping quantitative trait loci for resistance to downy mildew in pearl millet: field and glasshouse screens detect the same QTL. Crop Sci 42:1316–1323CrossRefGoogle Scholar
  34. Kannan B, Senthilvel S, Bhasker Raj AG, Chandra S, Muthiah A, Dhanapal AP, Hash CT (2014) Association analysis of SSR markers with phenology, grain and stover-yield related traits in pearl millet (Pennisetum glaucum (L.) R. Br.). TSWJ 2014:562327. doi: 10.1155/2014/562327 Google Scholar
  35. Kholová J, Nepolean T, Hash CT, Supriya A, Rajaram V, Senthilvel S, Kakkera A, Yadav RS, Vadez V (2012) Water saving traits co-map with a major terminal drought tolerance quantitative trait locus in pearl millet (Pennisetum glaucum (L.) R. Br.). Mol Breed 30:1337–1353. doi: 10.1007/s11032-012-9720-0 CrossRefGoogle Scholar
  36. Kilian A, Huttner E, Wenzl P, Jaccoud D, Carling J, Caig V, Evers M, Heller-Uszynska K, Cayla C, Patarapuwadol S, Xia L, Yang S, Thomson B (2005) The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the international congress “In the wake of the double helix: from the green revolution to the gene revolution”, 27–31 May, 2003. Avenue Media, Bologna, Italy, pp 443–461Google Scholar
  37. Korol AB, Preygel IA, Preygel SI (1994) Recombination variability and evolution. Chapman & Hall, LondonGoogle Scholar
  38. Langridge P, Chalmers K (1998) Techniques for marker development. In: Proceedings of the 9th international wheat genet symposium, vol 1, Saskatchewan, Canada, pp 107–117Google Scholar
  39. Lasky JR, Ramu P, Upadhyaya H, Deshpande S, Hash CT, Bonnette J, Juenger TE, Hyma K, Acharya C, Mitchell SE, Buckler ES, Brenton Z, Kresovich S, Morris GP (2015) Genome-environment associations in sorghum landraces predict adaptive traits. Sci Adv 1:e1400218. doi: 10.1126/sciadv.1400218 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Liu CJ, Witcombe JR, Pittaway TS, Nash M, Hash CT, Busso CS, Gale MD (1994) An RFLP-based genetic map in pearl millet (Pennisetum glaucum). Theor Appl Genet 89:481–487PubMedGoogle Scholar
  41. Liu CJ, Devos KM, Witcombe JR, Pittaway TS, Gale MD (1996) The effect of genome and sex on recombination rates in Pennisetum species. Theor Appl Genet 93:902–908CrossRefPubMedGoogle Scholar
  42. Liu CJ, King IP, Pittaway TS, Abbo S, Reader SM, Miller TE, Gale MD (1997) Physical and genetical mapping of rDNA sites in Pennisetum (pearl millet). Heredity 78:529–531CrossRefGoogle Scholar
  43. Mariac C, Luong V, Kapran I, Mamadou A, Sagnard M, Deu M, Chantereau J, Gerard B, Ndjeunga J, Bezançon G, Pham J, Vigouroux Y (2006a) Diversity of wild and cultivated pearl millet accessions (Pennisetum glaucum [L.] R. Br.) in Niger assessed by microsatellite markers. Theor Appl Genet 114:49–58CrossRefPubMedGoogle Scholar
  44. Mariac C, Robert T, Allinne C, Remigereau MS, Luxereau A, Tidjani M, Seyni O, Bezancon G, Pham J-L, Sarr A (2006b) Genetic diversity and gene flow among pearl millet crop/weed complex:a case study. Theor Appl Genet 113(6):1003–1014. doi: 10.1007/s00122-006-0360-9 CrossRefPubMedGoogle Scholar
  45. Mariac C, Jenin L, Saïdou AA, Thuillet AC, Couderc M, Sire P, Judge H, Adam H, Bezancon G, Pham J-L, Vigouroux Y (2011) Genetic basis of pearl millet adaptation along an environmental gradient investigated by a combinationof penome scan and association mapping. Mol Ecol 20(1):80–91. doi: 10.1111/j.1365-294X.2010.04893.x CrossRefPubMedGoogle Scholar
  46. Monson WG, Hanna WW, Gaines TP (1986) Effects of rust on yield and quality of pearl millet forage. Crop Sci 26:637–639CrossRefGoogle Scholar
  47. Moore G (2000) Cereal chromosome structure, evolution and pairing. Annu Rev Plant Physiol Plant Mol Biol 51:195–222CrossRefPubMedGoogle Scholar
  48. Morgan RN, Wilson JP, Hanna WW, Ozias-Akin P (1998) Molecular markers for rust and Pyricularia leaf spot disease resistance in pearl millet. Theor Appl Genet 96:413–420CrossRefPubMedGoogle Scholar
  49. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Brown PJ, Kresovich S (2013a) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110(2):453–458. doi: 10.1073/pnas1215985110 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Morris GP, Rhodes DH, Brenton Z, Ramu P, Thayil VM, Deshpande S, Hash CT, Acharya C, Mitchell SE, Buckler ES, Yu J, Kresovich S (2013b) Dissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traits. Genes Genomes Genet (G3) 3:2085–2094. doi: 10.1534/g3.113.008417 Google Scholar
  51. Moumouni KH, Kountche BA, Jean M, Hash CT, Vigouroux Y, Haussmann BIG, Belzile F (2015) Construction of a genetic map for pearl millet, Pennisetum glaucum (L.) R. Br., using a genotyping-by-sequencing (GBS) approach. Mol Breed 35:5. doi: 10.1007/s11032-015-0212-x CrossRefGoogle Scholar
  52. Nelson JC, Wang S, Wu Y, Li X, Antony G, Whote FF, Jet Yu (2011) Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum. BMC Genom 12:352. doi: 10.1186/1471-2164-12-352 CrossRefGoogle Scholar
  53. Nepolean T, Gupta SK, Dwivedi SL, Bhattacharjee R, Rai KN, Hash CT (2012) Genetic diversity in maintainer and restorer lines of pearl millet. Crop Sci 52(6):2555–2563CrossRefGoogle Scholar
  54. Parida SK, Kumar KAR, Dalal V, Singh NK, Mohapatra T (2006) Unigene derived microsatellite markers for the cereal genomes. Theor Appl Genet 112:808–817CrossRefPubMedGoogle Scholar
  55. Peng JH, Fahima T, Röder MS, Li YC, Grama A, Ronin YI, Korol AB, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531CrossRefPubMedPubMedCentralGoogle Scholar
  56. Poncet V, Lamy F, Devos KM, Gale MD, Sarr A, Robert T (2000) Genetic control of domestication traits in pearl millet (Poaceae). Theor Appl Genet 100:147–159CrossRefGoogle Scholar
  57. Poncet V, Martel E, Allouis S, Devos KM, Lamy F, Sarr A, Robert T (2002) Comparative analysis of QTLs affected by between two domesticated × wild pearl millet (Pennisetum glaucum L., Poaceae) crosses. Theor Appl Genet 104:965–975CrossRefPubMedGoogle Scholar
  58. Qi X, Lindup S, Pittaway TS, Allouis S, Gale MD, Devos KM (2001) Development of simple sequence repeat (SSR) markers from bacterial artificial chromosomes (BACs) without sub-cloning. Biotechniques 31(2):355–362PubMedGoogle Scholar
  59. Qi X, Pittaway TS, Lindup S, Liu H, Wateran E, Padi FK, Hash CT, Zhu J, Gale MD, Devos KM (2004) An integrated genetic map and new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum. Theor Appl Genet 109:1485–1493CrossRefPubMedGoogle Scholar
  60. Rajaram V, Nepolean T, Senthilvel S, Varshney RK, VadezV Srivastava RK, Shah TM, Supriya A, Kumar S, Ramana Kumari B, Bhanuprakash A, Narasu ML, Riera-Lizarazu O, Hash CT (2013) Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genom 14:159. doi: 10.1186/1471-2164-14-15 CrossRefGoogle Scholar
  61. Ramana Kumari B, Kolesnikova-Allen MA, Hash CT, Senthilvel S, Nepolean T, Witcombe JR, Kavi Kishor PB, Riera-Lizarazu O, Srivastava RK (2014) Development of a set of chromosome segment substitution lines in pearl millet [Pennisetum glaucum (L.) R. Br.]. Crop Sci 54(5):2175–2182. doi: 10.2135/cropsci2013.09.0589 CrossRefGoogle Scholar
  62. Ramsay L, Macaulay M, Degli Ivanissevich S, MacLean K, Cardle L, Fuller J, Edwards KJ, Tuvesson S, Morgante M, Massari A, Maestri E, Marmiroli N, Sjakste T, Ganal M, Owell W, Waugh R (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005PubMedPubMedCentralGoogle Scholar
  63. Rao AP, Rao MPP (1983) Resistance to rust in bajra germplasm [pearlmillet]. Andhra Agric J 30(1):57–58Google Scholar
  64. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedPubMedCentralGoogle Scholar
  65. Saïdou AA, Mariac C, Luong V, Pham JL, Bezancon G, Vigouroux Y (2009) Association studies identify natural variation at PHYC linked to flowering time and morphological variation in pearl millet. Genetics 182(3):899–910. doi: 10.1534/genetics.109.102756v1182/3/89 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Saïdou AA, Clotault J, Couderc M, Mariac C, Devos KM, Thuillet A-C, Amoukou IA, Vigouroux Y (2014a) Association mapping, patterns of linkage disequilibrium and selection in the vicinity of the PHYTOCHROME C gene in pearl millet. Theor Appl Genet 127(1):19–32. doi: 10.1007/s00122-013-2197-3 CrossRefPubMedGoogle Scholar
  67. Saïdou AA, Thuillet A-C, Couderc M, Mariac C, Vigouroux Y (2014b) Association studies including genotype by environment interactions: prospects and limitations. BMC Genet 15:3. doi: 10.1186/1471-2156-15-3 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sehgal D, Rajaram V, Armstead IP, Vadez V, Yadav YP, Hash CT, Yadav RS (2012) Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biol 12:9. doi: 10.1186/1471-2229-12-9 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Sehgal D, Skot L, Singh R, Srivastava R, Das SK, Taunk J, Sharma PC, Pal R, Bhasker Raj AG, Hash CT, Yadav RS (2015) Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS One 10(5):e0122165. doi: 10.1371/journal.pone.0122165 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555CrossRefPubMedGoogle Scholar
  71. Senthilvel S, Jayashree B, Mahalakshmi V, Sathish Kumar P, Nakka S, Nepolean T, Hash CT (2008) Development and mapping of Simple Sequence Repeat markers for pearl millet from data mining of Expressed Sequence Tags. BMC Plant Biol 8:119–127CrossRefPubMedPubMedCentralGoogle Scholar
  72. Singh SD (1990) Sources of resistance to downy mildew and rust in pearl millet. Plant Dis 74(11):871–874CrossRefGoogle Scholar
  73. Singh SD, Andrews DJ, Rai KN (1987) Registration of ICML 11 rust-resistant pearl millet germplasm. Crop Sci 27(2):367–368CrossRefGoogle Scholar
  74. Singh SD, King SB, Reddy PM (1990) Registration of five pearl millet germplasm sources with stable resistance to rust. Crop Sci 30(5):1165CrossRefGoogle Scholar
  75. Singh SD, Wilson JP, Navi SS, Talukdar BS, Hess DE, Reddy KN (1997) Screening techniques and sources of resistance to downy mildew and rust in pearl millet. Information Bulletin no. 48. International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, Andhra Pradesh, IndiaGoogle Scholar
  76. Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25CrossRefPubMedGoogle Scholar
  77. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744CrossRefGoogle Scholar
  78. Stich B, Haussmann BIG, Pasam R, Bhosale S, Hash CT, Melchinger AE, Parzies H (2010) Patterns of molecular and phenotypic diversity in pearl millet [Pennisetum glaucum (L.) R. Br.] from West and Central Africa and their relation to geographical and environmental parameters. BMC Plant Biol 10:216CrossRefPubMedPubMedCentralGoogle Scholar
  79. Storey J, Tibshirani R (2003) Statistical significance for genome wide studies. Proc Nat Acad Sci USA 100:9440–9945CrossRefPubMedPubMedCentralGoogle Scholar
  80. Supriya A, Senthilvel S, Nepolean T, Eshwar K, Rajaram V, Shaw R, Hash CT, Kilian A, Yadav RC, Narasu ML (2011) Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theor Appl Genet 123(2):239–250. doi: 10.1007/s00122-011-1580-1 CrossRefPubMedGoogle Scholar
  81. Tanksley SD, Ganal MW, Prince JP, de Vicente MC (1992) High density molecular linkage maps of the tomato and potato genomes: biological inferences and practical applications. Genetics 132:1141–1160PubMedPubMedCentralGoogle Scholar
  82. Tapsoba H, Wilson JP (1996) Pathogenic variation in Puccinia substriata var. indica in the southeastern United States and screening for resistance in pearl millet germplasm. Plant Dis 80:395–397CrossRefGoogle Scholar
  83. Thakur RP, Sharma R, Rao VP (2011) Screening techniques for pearl millet diseases. Information Bulletin No. 89. International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, Andhra Pradesh, IndiaGoogle Scholar
  84. Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, Stuttgart, GermanyGoogle Scholar
  85. van Os H, Stam P, Visser RGF, van Eck HJ (2005) RECORD: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40CrossRefPubMedGoogle Scholar
  86. Vengadessan V, Vinayan MT, Rai KN, Kannan Bapu JR, Hash CT, Bhattacharjee R, Senthilvel S, Nepolean T (2013) Construction of genetic linkage map and QTL analysis of sink-size traits in pearl millet (Pennisetum glaucum). ISRN Genet 2013:471632. doi: 10.5402/2013/471632 Google Scholar
  87. vom Brocke K, Christinck A, Weltzien ER, Presterl T, Geiger HH (2003) Farmers’ seed systems and management practices determine pearl millet genetic diversity patterns in semi-arid regions of India. Crop Sci 43:1680–1689CrossRefGoogle Scholar
  88. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78CrossRefPubMedGoogle Scholar
  89. Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Lübberstedt T, Xia XC, Stam P, Zabeau M, Kuiper M (1999) Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921–935CrossRefGoogle Scholar
  90. Wenzl P, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity Arrays Technology (DArT) for whole genome profiling of barley. Proc Natl Acad Sci USA 101(26):9915–9920CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wilson JP (1991) Detection of pathogenic races of Puccinia substriata var. indica in the U.S. Phytopathology 81:815CrossRefGoogle Scholar
  92. Wilson JP (1993a) Two new dominant genes for resistance to pearl millet rust. Phytopathology 83:1395Google Scholar
  93. Wilson JP (1993b) Identification of virulence in Puccinia substriata var. indica to Rr1 in pearl millet. Plant Dis 77:100CrossRefGoogle Scholar
  94. Wilson JP (2006) Inheritance of partial rust resistance in pearl millet. Plant Breed 116(3):239–243CrossRefGoogle Scholar
  95. Wilson JP, Gates RN, Hanna WW (1991) Effect of rust on yield and digestibility of pearl millet forage. Phytopathology 81:233–236CrossRefGoogle Scholar
  96. Wilson JP, Hanna WW, Gates RN (1994) Stability of forage yield and quality in pearl millet hybrids heterogeneous for rust resistance. Euphytica 72:163–170CrossRefGoogle Scholar
  97. Wilson JP, Hanna WW, Gascho GJ (1996) Pearl millet grain yield loss from rust infection. J Prod Agric 80:543–545CrossRefGoogle Scholar
  98. Wilson JP, Gates RN, Panwar MS (2001) The dynamic multiline approach to resistance gene management. Phytopathology 91(3):255–260CrossRefPubMedGoogle Scholar
  99. Witcombe JR, Hash CT (2000) Resistance-gene deployment strategies in cereal hybrids using marker-assisted selection: gene pyramiding, three-way hybrids, and synthetic seed parent populations. Euphytica 112:175–186CrossRefGoogle Scholar
  100. Yadav RS, Hash CT, Cavan GP, Bidinger FR, Howarth CJ (2002) Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought stress conditions. Theor Appl Genet 104:67–83CrossRefPubMedGoogle Scholar
  101. Yadav RS, Bidinger FR, Hash CT, Yadav YP, Yadav OP, Bhatnagar SK, Howarth CJ (2003) Mapping and characterization of QTL × E interactions for traits determining grain and stover yield in pearl millet. Theor Appl Genet 106:512–520PubMedGoogle Scholar
  102. Yadav RS, Hash CT, Bidinger FR, Devos KM, Howarth CJ (2004) Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and tester background. Euphytica 136:265–277CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Supriya Ambawat
    • 1
    • 2
  • Senapathy Senthilvel
    • 1
    • 3
  • Charles T. Hash
    • 1
    • 4
  • Thirunavukkarasu Nepolean
    • 1
    • 5
  • Vengaldas Rajaram
    • 1
  • Kankanti Eshwar
    • 1
  • Rajan Sharma
    • 1
  • Ram P. Thakur
    • 1
  • Veeranki P. Rao
    • 1
  • Ram C. Yadav
    • 2
  • Rakesh K. Srivastava
    • 1
  1. 1.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)HyderabadIndia
  2. 2.Department of Molecular Biology & BiotechnologyChaudhary Charan Singh Haryana Agricultural University (CCSHAU)HisarIndia
  3. 3.Directorate of Oilseeds Research (DOR)HyderabadIndia
  4. 4.ICRISAT Sahelian CenterInternational Crops Research Institute for the Semi-Arid Tropics (ICRISAT)NiameyNiger
  5. 5.Division of GeneticsIndian Agricultural Research Institute (IARI)New DelhiIndia

Personalised recommendations