, Volume 209, Issue 2, pp 323–339 | Cite as

Molecular basis of off-type microsatellite markers in papaya

  • Jingping Fang
  • Andrew Wood
  • Rukai Chen
  • Ray Ming


Papaya (Carica papaya L.) is a major fruit crop in the tropics and is a model system for studying sex chromosome evolution in plants. From a simple sequence repeat (SSR) mapping project in papaya, 37 SSRs displayed non-parental alleles in the F2 population, known as off-type markers. They all belong to Class I (≥20 bp, hypervariable markers). To investigate the molecular basis of these non-parental alleles, seven SSRs with off-type alleles were cloned and sequenced from two parents and selected F2 individuals. SSR repeat motif variation was the major cause for the generation of off-type alleles and single nucleotide polymorphisms (SNPs) and Insertion/deletion also contributed to off-type polymorphism. Off-type SSRs arose after one meiosis at 3 % frequency. Two of the seven markers had no polymorphisms between the parents but non-parental alleles segregated among the F2 individuals. Four of the seven markers exhibited SNPs between parents with transition and transversion at 2:1 ratio. Six markers showed additional SNPs between F2 offspring and parents with transition and transversion at about 1:1 ratio, suggesting higher than expected level of transversion mutations at the F2 population after one meiosis event between the parental genomes. These off-type SSRs were analyzed in a second F2 population and 43 % of them were conserved. The major cause of off-type SSRs in papaya is the variation of repeat length in Type I SSRs, and the underlining mechanism might be DNA replication slippage of repeat motifs. The presence and high conservation of these off-type markers demonstrated that hypervariable class I SSRs could generate genetic variation in one generation and increase genetic diversity for natural selection to enhance fitness.


Carica papaya Microsatellite Off-type markers Class I/II repeat motif 



Amplified fragment length polymorphism


Bacterial artificial chromosome


BAC end sequences


Male-specific region of the Y


Simple sequence repeat


Single nucleotide polymorphisms


Insertion and deletion


Whole-genome shotgun


Fluorescence in situ hybridization





This work was supported by a grant from NSF Plant Genome Research Program (Award No. DBI 0922545) and startup fund from Fujian Agriculture and Forestry University to R.M.

Authors’ contribution

RM and RC conceived the study, coordinated all research activities; JF and AW carried out wet lab experiments and conducted bioinformatics analysis; JF, RC and RM wrote the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10681_2015_1630_MOESM1_ESM.docx (156 kb)
Supplementary material 1 (DOCX 157 kb)


  1. Arumuganathan K, Earle E (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9(3):208–218CrossRefGoogle Scholar
  2. Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B (2009) PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327(5967):836–840. doi: 10.1126/science.1183439 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Blas AL, Ming R, Liu ZY, Veatch OJ, Paull RE, Moore PH, Yu QY (2010) Cloning of the papaya chromoplast-specific lycopene beta-cyclase, CpCYC-b, controlling fruit flesh color reveals conserved microsynteny and a recombination hot spot. Plant Physiol 152(4):2013–2022. doi: 10.1104/pp.109.152298 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Blas AL, Yu Q, Veatch OJ, Paull RE, Moore PH, Ming R (2012) Genetic mapping of quantitative trait loci controlling fruit size and shape in papaya. Mol Breed 29(2):457–466CrossRefGoogle Scholar
  5. Chen C, Yu Q, Hou S, Li Y, Eustice M, Skelton RL, Veatch O, Herdes RE, Diebold L, Saw J (2007) Construction of a sequence-tagged high-density genetic map of papaya for comparative structural and evolutionary genomics in brassicales. Genetics 177(4):2481–2491CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fitch MM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1990) Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep 9(4):189–194. doi: 10.1007/BF00232177 CrossRefPubMedGoogle Scholar
  7. Fitch MM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1992) Virus resistant papaya derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Biotechnology 10:1466–1472CrossRefGoogle Scholar
  8. Harding RM, Boyce A, Clegg J (1992) The evolution of tandemly repetitive DNA: recombination rules. Genetics 132(3):847–859PubMedPubMedCentralGoogle Scholar
  9. Hauge X, Litt M (1993) A study of the origin of ‘shadow bands’ seen when typing dinucleotide repeat polymorphisms by the PCR. Hum Mol Genet 2(4):411–415CrossRefPubMedGoogle Scholar
  10. Jeffreys AJ, Kauppi L, Neumann R (2001) Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet 29:217–222CrossRefPubMedGoogle Scholar
  11. Katti MV, Ranjekar PK, Gupta VS (2001) Differential distribution of simple sequence repeats in eukaryotic genome sequences. Mol Biol Evol 18(7):1161–1167CrossRefPubMedGoogle Scholar
  12. Kumar P, Chaitanya PS, Nagarajaram HA (2011) PSSRdb: a relational database of polymorphic simple sequence repeats extracted from prokaryotic genomes. Nucleic Acids Res 39(suppl 1):D601–D605CrossRefPubMedPubMedCentralGoogle Scholar
  13. La Rota M, Kantety RV, Yu J-K, Sorrells ME (2005) Nonrandom distribution and frequencies of genomic and EST-derived microsatellite markers in rice, wheat, and barley. BMC Genomics 6(1):23CrossRefPubMedPubMedCentralGoogle Scholar
  14. Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4(3):203–221PubMedGoogle Scholar
  15. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760CrossRefPubMedPubMedCentralGoogle Scholar
  16. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079CrossRefPubMedPubMedCentralGoogle Scholar
  17. Liu S, Liu W, Jakubczak JL, Erexson GL, Tindall KR, Chan R, Muller WJ, Adhya S, Garges S, Merlino G (2002) Genetic instability favoring transversions associated with ErbB2-induced mammary tumorigenesis. Proc Natl Acad Sci USA 99(6):3770–3775CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ma H, Moore PH, Liu Z, Kim MS, Yu Q, Fitch MM, Sekioka T, Paterson AH, Ming R (2004) High-density linkage mapping revealed suppression of recombination at the sex determination locus in papaya. Genetics 166(1):419–436CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452(7190):991–996CrossRefPubMedPubMedCentralGoogle Scholar
  20. Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30(2):194–200CrossRefPubMedGoogle Scholar
  21. Mun J-H, Kim D-J, Choi H-K, Gish J, Debellé F, Mudge J, Denny R, Endré G, Saurat O, Dudez A-M (2006) Distribution of microsatellites in the genome of Medicago truncatula: a resource of genetic markers that integrate genetic and physical maps. Genetics 172(4):2541–2555CrossRefPubMedPubMedCentralGoogle Scholar
  22. Na J-K, Wang J, Murray JE, Gschwend AR, Zhang W, Yu Q, Pérez RN, Feltus FA, Chen C, Kubat Z (2012) Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genomics 13(1):176CrossRefPubMedGoogle Scholar
  23. Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, Weigel D, Lynch M (2010) The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327(5961):92–94CrossRefPubMedGoogle Scholar
  24. Padmanabhan S, Thakur J, Siddharthan R, Sanyal K (2008) Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis. Proc Natl Acad Sci USA 105(50):19797–19802CrossRefPubMedPubMedCentralGoogle Scholar
  25. Parvanov ED, Petkov PM, Paigen K (2010) Prdm9 controls activation of mammalian recombination hotspots. Science 327:835CrossRefPubMedPubMedCentralGoogle Scholar
  26. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2(3):225–238CrossRefGoogle Scholar
  27. Schlötterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucleic Acids Res 20(2):211–215CrossRefPubMedPubMedCentralGoogle Scholar
  28. Storey W (1969) Papaya. In: Ferwerda FP, Wit F (eds) Outlines of perennial crop breeding in the tropics. Wageningen H. Veenman and Zonen NV, WageningenGoogle Scholar
  29. Sugden KD, Campo CK, Martin BD (2001) Direct oxidation of guanine and 7,8-dihydro-8-oxoguanine in DNA by a high-valent chromium complex: a possible mechanism for chromate genotoxicity. Chem Res Toxicol 14(9):1315–1322CrossRefPubMedGoogle Scholar
  30. Tachida H, Iizuka M (1992) Persistence of repeated sequences that evolve by replication slippage. Genetics 131(2):471–478PubMedPubMedCentralGoogle Scholar
  31. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11(8):1441–1452CrossRefPubMedPubMedCentralGoogle Scholar
  32. Tóth G, Gáspári Z, Jurka J (2000) Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res 10(7):967–981CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wai CM, Ming R, Moore PH, Paull RE, Yu Q (2010) Development of chromosome-specific cytogenetic markers and merging of linkage fragments in papaya. Trop Plant Biol 3(3):171–181. doi: 10.1007/s12042-010-9054-1 CrossRefGoogle Scholar
  34. Walsh PS, Fildes NJ, Reynolds R (1996) Sequence analysis and characterization of stutter products at the tetranucleotide repeat locus vWA. Nucleic Acids Res 24(14):2807–2812CrossRefPubMedPubMedCentralGoogle Scholar
  35. Wang J, Chen C, Na J-K, Yu Q, Hou S, Paull RE, Moore PH, Alam M, Ming R (2008) Genome-wide comparative analyses of microsatellites in papaya. Trop Plant Biol 1(3–4):278–292CrossRefGoogle Scholar
  36. Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond B Biol 268(1482):2211–2220CrossRefGoogle Scholar
  37. Yu Q, Tong E, Skelton RL, Bowers JE, Jones MR, Murray JE, Hou S, Guan P, Acob RA, Luo M-C (2009) A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics 10(1):371CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zhang L, Yuan D, Yu S, Li Z, Cao Y, Miao Z, Qian H, Tang K (2004) Preference of simple sequence repeats in coding and non-coding regions of Arabidopsis thaliana. Bioinformatics 20(7):1081–1086CrossRefPubMedGoogle Scholar
  39. Zhang W, Wai CM, Ming R, Yu Q, Jiang J (2010) Integration of genetic and cytological maps and development of a pachytene chromosome-based karyotype in papaya. Trop Plant Biol 3(3):166–170CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jingping Fang
    • 1
    • 2
  • Andrew Wood
    • 3
  • Rukai Chen
    • 1
  • Ray Ming
    • 2
    • 3
  1. 1.Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of AgricultureFujian Agriculture and Forestry UniversityFuzhouChina
  2. 2.FAFU and UIUC-SIB Joint Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
  3. 3.Department of Plant BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations