Skip to main content
Log in

Candidate gene expression profiling reveals a time specific activation among different harvesting dates in ‘Golden Delicious’ and ‘Fuji’ apple cultivars

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Fruit quality is a combination of several features impacting the general consumers’ appreciation, and it is thought as the final result of a complex physiological mechanism ongoing during the entire ontogenic life cycle. In the horticultural management apples are normally stored for a long period, ensuring the availability of fresh fruit on the market over a year-round period. In this context, the role of postharvest is to preserve the properties gained at harvest without sacrificing the general fruit quality. In this scenario, the choice of the most appropriate harvest time plays a crucial role, representing a compromise between the achievement of a sufficient quality and the mechanical resistance to harvest and postharvest practice. So far the harvesting time has been defined with too elementary and empirical tools, making thus difficult the selection of a proper harvesting window. In this work, the expression profile of thirteen genes involved in auxin, ethylene as well as cell wall metabolism have been assessed over several dates of two apple cultivars distinguished by a different ripening behavior, such as ‘Golden Delicious’ and ‘Fuji’. The monitoring of the apple fruit maturity by candidate gene transcription profiling propose these elements as novel biomarkers, suggesting the first 10 days, after the commercial harvest, as the most appropriate harvesting window for ‘Golden Delicious’. In ‘Fuji’, instead, the time frame resulted more extended, due to a reduced expression of marker genes and slower ripening progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039–2055

    Article  PubMed  CAS  Google Scholar 

  • Audran-Delalande C, Bassa C, Mila I, Regad F, Zouine M, Bouzayen M (2012) Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato. Plant Cell Physiol 53:659–672

    Article  PubMed  CAS  Google Scholar 

  • Barry CS, Giovannoni JJ (2007) Ethylene and fruit ripening. J Plant Growth Regul 26:143–159

    Article  CAS  Google Scholar 

  • Begheldo M, Manganaris GA, Bonghi C, Tonutti P (2008) Different postharvest conditions modulate ripening and ethylene biosynthetic and signal transduction pathways in stony hard peaches. Postharvest Biol Technol 48:84–91

    Article  CAS  Google Scholar 

  • Bink MCAM, Jansen J, Madduri M, Voorrips RE, Durel CE, Kouassi AB, Laurens F, Mathis F, Gessler C, Gobbin D, Rezzonico F, Patocchi A, Kellerhals M, Boudichevskaia A, Dunemann F, Peil A, Nowicka A, Lata B, Stankiewicz-Kosyl M, Jeziorek K, Pitera E, Soska A, Tomala K, Evans KM, Fernández-Fernández F, Guerra W, Korbin M, Keller S, Lewandowski M, Plocharski W, Rutkowski K, Zurawicz E, Costa F, Sansavini S, Tartarini S, Komjanc M, Mott D, Antofie A, Lateur M, Rondia A, Gianfranceschi L, van de Weg WE (2014) Bayesian QTL analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple. Theor Appl Genet. doi:10.1007/s00122-014-2281-3

    PubMed  Google Scholar 

  • Brummell DA (2006) Cell wall disassembly in ripening fruit. Funct Plant Biol 33:103–119

    Article  CAS  Google Scholar 

  • Brummell DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2000) New genes and new biological roles for expansins. Curr Opin Plant Biol 3:73–78

    Article  PubMed  CAS  Google Scholar 

  • Costa F, Stella S, Van de Weg WE, Guerra W, Cecchinel M, Dalla Via J, Koller B, Sansavini S (2005) Role of the genes Md-ACO1 and Md-ACS1 in ethylene pro-duction and shelf life of apple (Malus domestica Borkh.). Euphytica 141:181–190

    Article  CAS  Google Scholar 

  • Costa F, Alba R, Schouten H, Soglio V, Gianfranceschi L, Serra S, Musacchi S, Sansavini S, Costa G, Fei ZJ, Giovannoni J (2010a) Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening. BMC Plant Biol 10:299

    Article  CAS  Google Scholar 

  • Costa F, Peace CP, Stella S, Serra S, Musacchi S, Bazzani M, Sansavini S, Van de Weg WE (2010b) QTL dynamics for fruit firmness and softening around an ethylene-dependent polygalacturonase gene in apple (Malus × domestica Borkh.). J Exp Bot 61:3029–3039

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Costa F, Cappellin L, Longhi S, Guerra W, Magnago P, Porro D, Soukoulis C, Salvi S, Velasco R, Biasioli F, Gasperi F (2011) Assessment of apple (Malus × domestica Borkh.) fruit texture by a combined acoustic-mechanical profiling strategy. Postharvest Biol Technol 6:21–28

    Article  Google Scholar 

  • Costa F, Cappellin L, Fontanari M, Longhi S, Guerra W, Magnago P, Gasperi F, Biasioli F (2012) Texture dynamics during postharvest cold storage ripening in apple (Malus × domestica Borkh.). Postharvest Biol Technol 69:54–63

    Article  Google Scholar 

  • Costa F, Cappellin L, Farneti B, Tadiello A, Romano A, Soukoulis C, Sansavini S, Velasco R, Biasioli F (2014) Advances in QTL mapping for ethylene production in apple (Malus × domestica Borkh). Pstharvest Biol Technol 87:126–132

    Article  CAS  Google Scholar 

  • Cristescu SM, Persijn ST, Hekkert SL, Harren FJM (2008) Laser-based systems for trace gas detection in life sciences. Appl Phys B 92:343–349

    Article  CAS  Google Scholar 

  • Di Guardo M, Tadiello A, Farneti B, Lorenz G, Masuero D, Vrhovsek U, Costa G, Velasco R, Costa F (2013) A multidisciplinary approach providing new insight into fruit flesh browning physiology in apple (Malus × domestica Borkh.). Plos ONE 8:10

    Google Scholar 

  • Echeverria G, Graell J, Lara I, Lopez ML, Puy J (2008) Panel consonance in the sensory evaluation of apple attributes: influence of mealiness on sweetness perception. J Sens Stud 23:656–670

    Article  Google Scholar 

  • Giovannoni J (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Phys 52:725–749

    Article  CAS  Google Scholar 

  • Hadfield KA, Bennett AB (1998) Polygalacturonase: many genes in search of a function. Plant Physiol 117:337–343

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hadfield KA, Rose JKC, Yaver DS, Berka RM, Bennett AB (1998) Polygalacturonase gene expression in ripe melon fruit supports a role for polygalacturonase in ripening-associated pectin disassembly. Plant Physiol 117:363–373

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Harada T, Sunako T, Wakasa Y, Soejima J, Satoh T, Niizeki M (2000) An allele of the 1-aminocyclopropane-1-carboxylate synthase gene (Md-ACS1) accounts for the low level of ethylene production in climacteric fruits of some apple cultivars. Theor Appl Genet 101:742–746

    Article  CAS  Google Scholar 

  • Harker FR, Maindonald J, Murray SH, Gunson FA, Hallett IC, Walker SB (2002) Sensory interpretation of instrumental measurements 1: texture of apple fruit. Postharvest Biol Technol 24:225–239

    Article  Google Scholar 

  • Ireland HS, Yao J-L, Tomes S, Sutherland PW, Nieuwenhuizen N, Gunaseelan K, Winz RA, David KM, Schaffer RJ (2013) Apple SEPALLATA1/2-like genes control fruit flesh development and ripening. The Plant J 73:1044–1056

    Article  PubMed  CAS  Google Scholar 

  • Janssen BJ, Thodey K, Schaffer RL, Alba R, Balakrishnan L, Bishop R, Bowen JH, Crowhurst RN, Gleave AP, Ledger S, McArtney S, Pichler FB, Snowden KC, Ward S (2008) Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol 8:16

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jobling J, McGlasson WB (1995) Chilling at 0°C in air induces ethylene production in Fuji and Lady Williams apples. Aust J Exp Agric 35:651–655

    Article  CAS  Google Scholar 

  • Kilcast D (2004) Texture in food. Volume 2: solid foods. Woodhead Publishing Limited, Cambridge

    Book  Google Scholar 

  • Lashbrook CC, Tieman DM, Klee HJ (1998) Differential regulation of the tomato ETR gene family throughout plant development. Plant J 15:143–252

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Longhi S, Moretto M, Viola R, Velasco R, Costa F (2012) Comprehensive QTL mapping survey dissects the complex fruit texture physiology in apple (Malus × domestica Borkh.). J Exp Bot 63:1107–1121

    Article  PubMed  CAS  Google Scholar 

  • Marin-Rodriguez MC, Orchard J, Seymour GB (2002) Pectate lyases, cell wall degradation and fruit softening. J Exp Bot 53:2115–2119

    Article  PubMed  CAS  Google Scholar 

  • Miller AN, Walsh CS, Cohen JD (1987) Measurement of indole-3-acetic acid in peach fruits (Prunus persica L. Batsch cv. Redhaven) during development. Plant Physiol 84:491–494

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Neuwald DA, Streif J, Kittemann D (2010) Fruit starch degradation patterns in apple cultivars on-tree and off-tree at different holding temperatures. Acta horticulturae 858:263–266

    Article  CAS  Google Scholar 

  • Nishiyama K, Guis M, Rose JK, Kubo Y, Bennett KA, Wangjin L, Kato K, Ushijima K, Nakano R, Inaba A, Bouzayen M, Latche A, Pech JC, Bennett AB (2007) Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon. J Exp Bot 58:1281–1290

    Article  PubMed  CAS  Google Scholar 

  • Nyasordzi J, Friedman H, Schmilovitch Z, Ignat T, Weksler A, Rot I, Lurie S (2013) Utilizing the IAD index to determine internal quality attributes of apples at harvest and after storage. Postharvest Biol Technol 77:80–86

    Article  Google Scholar 

  • Rose JKC, Hadfield KA, Labavitch JM, Bennett AB (1998) Temporal sequence of cell wall disassembly in rapidly ripening melon fruit. Plant Physiol 117:345–361

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rudell DR, Mattinson DS, Fellman JK, Mattheis JP (2000) The progression of ethylene production and respiration in the tissues of ripening ‘Fuji’ apple fruit. HortScience 35:1300–1303

    CAS  Google Scholar 

  • Sanzol J (2010) Dating and functional characterization of duplicated genes in the apple (Malus domestica Borkh.) by analyzing EST data. BMC Plant Biol 10:87

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shakeel SN, Wang X, Binder BM, Shaller GE (2012) Mechanism of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AoB Plants 5:10

    Google Scholar 

  • Sitrit Y, Bennett AB (1998) Regulation of tomato fruit polygalacturonase mRNA accumulation by ethylene: a re-examination. Plant Physiol 116:1145–1150

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Soglio V, Costa F, Molthoff JW, Weemen-Hendriks WMJ, Schouten HJ, Gianfranceschi L (2009) Transcription analysis of apple fruit development using cDNA microarrays. Tree Genet Genomes 5:685–698

    Article  Google Scholar 

  • Sunako T, Sakuraba W, Senda M, Akada S, Ishikawa R, Niizeki M, Harada T (1999) An allele of the ripening-specific 1-aminocyclopropane-1-carboxylic acid synthase gene (ACS1) in apple fruit with a long storage life. Plant Physiol 119:1297–1304

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tatsuki M, Haji T, Yamaguchi M (2006) The involvement of 1-aminocyclopropane-1-carboxylic acid synthase isogene, Pp-ACS1, in peach fruit softening. J Exp Bot 57:1281–1289

    Article  PubMed  CAS  Google Scholar 

  • Tatsuki M, Nakajima N, Fujii H, Shimada T, Nakano M, Hayashi K, Hayama H, Yoshioka H, Nakamura Y (2013) Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (Prunus persica L. Batsch). J Exp Bot 64:1049–1059

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Trainotti L, Tadiello A, Casadoro G (2007) The involvement of auxin in the ripening of climacteric fruits come of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J Exp Bot 58:3299–3308

    Article  PubMed  CAS  Google Scholar 

  • Varanasi V, Shin S, Mattheis J, Rudell D, Zhu Y (2011) Expression profiles of the MdACS3 gene suggest a function as an accelerator of apple (Malus × domestica) fruit ripening. Postharvest Biol Technol 2:141–148

    Article  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  PubMed  CAS  Google Scholar 

  • Wakasa Y, Kudo H, Ishikawa R, Akada S, Senda M, Niizeki M, Harada T (2006) Low expression of an endopolygalacturonase gene in apple fruit with long-term storage potential. Postharvest Biol Technol 39:193–198

    Article  CAS  Google Scholar 

  • Wang A, Yamakake J, Kudo H, Wakasa Y, Hatsuyama Y, Igarashi W, Kasai A, Li T, Harada T (2009) Null mutation of the MdACS3 gene, coding for a ripening-specific 1-aminocyclopropane-1-carboxylate synthase, leads to long shelf life in apple fruit. Plant Physiol 151:391–399

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wilkinson JQ, Lanahan MB, Yen H-C, Giovannoni JJ, Klee HJ (1995) An ethylene-inducible component of signal transduction encoded by never-ripe. Science 270:1807–1809

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Szakacs-Dobozi M, Hemmat M, Hrazdine G (1993) Endopolygalacturonase in apples (Malus domestica) and its expression during fruit ripening. Plant Physiol 102:219–225

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang SF, Hoffman E (1984) Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Ziosi V, Noferini M, Fiori G, Tadiello A, Trainotti L, Casadoro G, Costa G (2008) A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit. Postharvest Biol Technol 49:319–329

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank Franco Biasioli and the Volatile Organic Compounds platform to have made available the ethylene sensor for this work. This research was founded by the Agroalimentare research AGER project (Grant No. 2010–2119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Costa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10681_2015_1621_MOESM1_ESM.pptx

Online resource 1 (PPTX 96 kb) Online Resource 1 Sampling scheme for the two apple cultivars used in this study. The two arrows indicate the commercial harvest dates established for the two cultivars, ‘Golden Delicious’ and ‘Fuji’, respectively. DFH: days from the commercial harvest

10681_2015_1621_MOESM2_ESM.eps

Online resource 2 (EPS 1156 kb) Online Resource 2 Gene expression heat-map profile for all the different harvesting dates in both “Golden Delicious” and “Fuji” apple cultivars. The gene expression intensity spanned form light green (low) to red (high), as illustrated by the color gradient scale. The data are expressed as normalized expression

10681_2015_1621_MOESM3_ESM.docx

Online resource 3 (DOCX 51 kb) Online Resource 3 Pearson correlation value between the transcription profile of the gene set employed here and the ethylene accumulation assessed for each harvesting date in ‘Golden Delicious’ and ‘Fuji’, respectively (P value < 0.05). The roman number on the left side indicate the group to which each gene belong

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busatto, N., Farneti, B., Tadiello, A. et al. Candidate gene expression profiling reveals a time specific activation among different harvesting dates in ‘Golden Delicious’ and ‘Fuji’ apple cultivars. Euphytica 208, 401–413 (2016). https://doi.org/10.1007/s10681-015-1621-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1621-y

Keywords

Navigation