, Volume 208, Issue 3, pp 415–438 | Cite as

Germplasm enhancement of Cucurbita pepo (pumpkin, squash, gourd: Cucurbitaceae): progress and challenges

  • Harry S. Paris


Cucurbita pepo is extremely diverse in fruit characteristics. Native to semi-arid and temperate regions of North America, C. pepo was domesticated at least twice, in Mexico over 10,000 years ago and in the United States over 4000 years ago. There is no evidence for the existence of Cucurbita in the Old World prior to 1492. Pumpkins and squash of C. pepo are today found in countries on all continents. Pumpkins are valued for their fruit flesh and seeds, as well as for ornament. Squash, especially zucchini, are an increasingly popular, short-season, high-value crop. Plant resource allocation is fundamentally different for plants on which fruits are allowed to mature, the pumpkins and winter squash, as compared with those on which the fruits are continually removed when young, the summer squash. C. pepo contains a wealth of genetic variation that could be further exploited to enhance the fruit-flesh quality of pumpkins and the flavor of summer squash. Genomic tools can be expected to aid in this effort and, especially, facilitate the introgression of disease resistance from other species of Cucurbita. Fruit quality and flavor enhancements of pumpkins and squash have been and are being accomplished largely by the consumer-oriented breeders at research and academic institutions. However, lack of support for these breeding programs is jeopardizing the continued consumer-oriented fruit-quality enhancement of C. pepo germplasm.


Consumer-oriented breeding Evolution under domestication Fruit quality Plant resource allocation 


  1. Abudy A, Sufrin-Ringwald T, Dayan-Glick C, Guenoune-Gelbart D, Livneh O, Zaccai M, Lapidot M (2010) Watermelon chlorotic stunt and Squash leaf curl begomoviruses—new threats to cucurbit crops in the Middle East. Isr J Plant Sci 58:33–42CrossRefGoogle Scholar
  2. Amutha S, Muruganantham M, Ananthakrishnan G, Yablonsky S, Singer S, Gaba V (2009) Improved shoot regeneration due to prolonged seed storage. Sci Hort 119:117–119CrossRefGoogle Scholar
  3. Ananthakrishnan G, Xia X, Amutha S et al (2007) Ultrasonic treatment stimulates multiple shoot regeneration and explant enlargement in recalcitrant squash cotyledon explants in vitro. Plant Cell Rep 26:267–276PubMedCrossRefGoogle Scholar
  4. Andres TC (1987) Cucurbita fraterna, the closest wild relative and progenitor of C. pepo. Cucurbit Genet Coop Rep 10:69–71Google Scholar
  5. Andres TC (2000) Searching for Cucurbita germplasm: collecting more than seeds. In: Katzir N, Paris HS (eds) Proceedings of Cucurbitaceae 2000. Acta Hort 510:191–198Google Scholar
  6. Andrews AC (1958) Melons and watermelons in the classical era. Osiris 12:368–375CrossRefGoogle Scholar
  7. Artyomenko SB, Chaban LN (2000) Production of cucurbit seed oil by cold pressing process in the “Farmaol” company. Cucurbit Genet Coop Rep 23:120–121Google Scholar
  8. Avila-Sakar G, Krupnick GA, Stephenson AG (2001) Growth and resource allocation in Cucurbita pepo ssp. texana: effects of fruit removal. Int J Plant Sci 162:1089–1095CrossRefGoogle Scholar
  9. Babadoost M (2000) Outbreak of phytophthora foliar blight and fruit rot in processing pumpkin fields in Illinois. Plant Dis 84:1345CrossRefGoogle Scholar
  10. Babadoost M, Zitter TA (2009) Fruit rots of pumpkin. Plant Dis 93:772–782CrossRefGoogle Scholar
  11. Baggett JR (1972) Open growth habit in summer squash. HortScience 7:288Google Scholar
  12. Baggett JR, Kean D (1990) ‘Sugar Loaf’ and ‘Honey Boat’ winter squashes. HortScience 25:369–370Google Scholar
  13. Bailey LH (1943) Species of Cucurbita. Gentes Herbarum 6:266–322Google Scholar
  14. Bazzaz FA, Carlson RW, Harper JL (1979) Contribution to reproductive effort by photosynthesis of flowers and fruits. Nature 279:554–555CrossRefGoogle Scholar
  15. Berenji J (2011) Uljana tikva, Cucurbita pepo L. Institut za Ratarstvo Povrtarstvo, Novi Sad, SerbiaGoogle Scholar
  16. Berenji J, Papp D (2000) Interrelationships among fruit and seed characteristics of oil pumpkin. In: Katzir N, Paris HS (eds) Proceedings of Cucurbitaceae 2000. Acta Hort 510:101–104Google Scholar
  17. Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Pico B (2011) Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genom 12:104CrossRefGoogle Scholar
  18. Blanca J, Montero Pau J, Esteras C et al (2015) The genome of Cucurbita pepo, a tool for breeders. In: Gomez Guillamon ML, Perez Alfocea F (eds) Cucurbits 2015. Programme and Book of Abstracts. International Society for Horticultural Science, Leuven, Belgium, p 20Google Scholar
  19. Borenstein B, Bunnell RH (1966) Carotenoids: properties, occurrence, and utilization in foods. Adv Food Res 15:195–276PubMedCrossRefGoogle Scholar
  20. Brown RN, Myers JR (2002) A genetic map of squash (Cucurbita sp.) with randomly amplified polymorphic DNA markers and morphological markers. J Am Soc Hort Sci 127:568–575Google Scholar
  21. Brown JK, Idris AM, Alteri C, Stenger DC (2002) Emergence of a new cucurbit-infecting begomovirus species capable of forming viable reassortants with related viruses in the Squash leaf curl virus cluster. Phytopathology 92:734–742PubMedCrossRefGoogle Scholar
  22. Brown RN, Bolanos-Herrera A, Myers JR, Jahn MM (2003) Inheritance of resistance to four cucurbit viruses in Cucurbita moschata. Euphytica 129:253–258CrossRefGoogle Scholar
  23. Burger Y, Schwartz A, Paris HS (1988) Physiological and anatomical features of the silvering disorder of Cucurbita. J Hort Sci 63:635–640Google Scholar
  24. Carbonell ME, Wessel-Beaver L, Varela F, Luciano B (1990) Pumpkin (Cucurbita moschata) breeding priorities based on a survey among Puerto Rican consumers. J Agric Univ Puerto Rico 74:229–236Google Scholar
  25. Cardoza YJ, McAuslane HJ, Webb SE (1998) Zucchini squash genotypes resistant to whitefly-induced squash silverleaf disorder. In: McCreight JD (ed) Cucurbitaceae ’98. ASHS Press, Alexandria, pp 90–94Google Scholar
  26. Carter GF (1945) Plant geography and culture history in the American Southwest. Viking Fund Publications in Anthropology No. 5, New YorkGoogle Scholar
  27. Carvajal F, Martinez C, Jamilena M, Garrido D (2011) Differential response of zucchini varieties to low storage temperature. Sci Hort 130:90–96CrossRefGoogle Scholar
  28. Chambliss OL, Jones CM (1966) Cucurbitacins: specific insect attractants in Cucurbitaceae. Science 153:1392–1393PubMedCrossRefGoogle Scholar
  29. Chauvet M (2004) European and Mediterranean cucurbits before Christopher Columbus. In: Jacobsohn A (ed) L’Épopée des courges. École nationale supérieure du paysage, Versailles, pp 16–37Google Scholar
  30. Chen J, McAuslane HJ, Carle RB, Webb SE (2004) Impact of Bemisia argentifolii (Homoptera: Auchenorrhyncha: Aleyrodidae) infestation and squash silverleaf disorder on zucchini yield and quality. J Econ Entomol 97:2083–2094PubMedCrossRefGoogle Scholar
  31. Clark RL, Widrlechner MP, Reitsma KR, Block CC (1991) Cucurbit germplasm at the North Central Regional Plant Introduction Station, Ames, Iowa. HortScience 26:450–451Google Scholar
  32. Clough GH, Hamm PB (1995) Coat protein transgenic resistance to watermelon mosaic and zucchini yellow mosaic virus in squash and cantaloupe. Plant Dis 79:1107–1109CrossRefGoogle Scholar
  33. Cohen S, Ben-Joseph R (2000) The dynamics of viruses affecting cucurbits in Israel: 40 years since 1960. In: Katzir N, Paris HS (eds) Proceedings of Cucurbitaceae 2000. Acta Hort 510:321–325Google Scholar
  34. Cohen S, Duffus JE, Larsen RC, Liu HY, Flock RA (1983) Purification, serology, and vector relationships of squash leaf curl virus, a whitefly-transmitted geminivirus. Phytopathology 73:1669–1673CrossRefGoogle Scholar
  35. Cohen R, Leibovich G, Shtienberg D, Paris HS (1993) Variability in the reaction of squash (Cucurbita pepo) to inoculation with Sphaerotheca fuliginea and methodology of breeding for resistance. Plant Pathol 42:510–516CrossRefGoogle Scholar
  36. Cohen Y, Meron I, Mor N, Zuriel S (2003) A new pathotype of Pseudoperonospora cubensis causing downy mildew in cucurbits in Israel. Phytoparasitica 31:458–466CrossRefGoogle Scholar
  37. Cohen Y, van den Langenberg KM, Wehner TC et al (2015) Resurgence of Pseudoperonospora cubensis: the causal agent of cucurbit downy mildew. Phytopathology 105:998–1012PubMedCrossRefGoogle Scholar
  38. Cook JP (2000) Styrian pumpkin oil: the marketing perspective. Cucurbit Genet Coop Rep 23:128Google Scholar
  39. Costa HS, Ullman DE, Johnson MW, Tabashnik BE (1993) Squash silverleaf symptoms induced by immature, but not adult, Bemisia tabaci. Phytopathology 83:763–766CrossRefGoogle Scholar
  40. Cowan CW (1997) Evolutionary changes associated with the domestication of Cucurbita pepo. In: Gremillion KJ (ed) People, plants, and landscapes: studies in paleoethnobotany. University of Alabama Press, Tuscaloosa, pp 63–85Google Scholar
  41. Culpepper CW (1937) Composition of summer squash and its relationship to variety, stage of maturity, and use as a food product. Food Res 2:289–303CrossRefGoogle Scholar
  42. Culpepper CW, Moon HH (1945) Differences in the composition of the fruits of Cucurbita varieties at different ages in relation to culinary use. J Agric Res 71:111–136Google Scholar
  43. Curtis LC (1939) Heterosis in summer squash (Cucurbita pepo) and the possibilities of producing F1 hybrid seed for commercial planting. Proc Am Soc Hort Sci 37:827–828Google Scholar
  44. Cutler HC, Whitaker TW (1961) History and distribution of the cultivated cucurbits in the Americas. Am Antiq 26:469–485CrossRefGoogle Scholar
  45. Danilchenko H, Paulauskiene A, Dris R, Niskanen R (2000) Biochemical composition and processability of pumpkin cultivars. In: Katzir N, Paris HS (eds) Proceedings of Cucurbitaceae 2000. Acta Hort 510:493–497Google Scholar
  46. Decker DS (1988) Origin(s), evolution, and systematics of Cucurbita pepo (Cucurbitaceae). Econ Bot 42:4–15CrossRefGoogle Scholar
  47. Decker-Walters DS (1990) Evidence for multiple domestications of Cucurbita pepo. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Comstock, Ithaca, pp 96–101Google Scholar
  48. Desbiez C, Lecoq H (1997) Zucchini yellow mosaic virus. Plant Pathol 46:809–829CrossRefGoogle Scholar
  49. Diez MJ, Pico B, Nuez F (2002) Cucurbit genetic resources in Europe. Ad hoc meeting, 19 January 2002, IPGRI, RomeGoogle Scholar
  50. Duchesne AN (1786) Essai sur l’histoire naturelle des courges. Panckoucke, ParisGoogle Scholar
  51. El-Keblawy A, Lovett-Doust J (1996) Resource re-allocation following fruit removal in cucurbits: patterns in two varieties of squash. New Phytol 133:583–593CrossRefGoogle Scholar
  52. Elmer WH (1996) Fusarium fruit rot of pumpkin in Connecticut. Plant Dis 80:131–135CrossRefGoogle Scholar
  53. Emerson RA (1910) The inheritance of sizes and shapes in plants. Am Nat 44:739–746CrossRefGoogle Scholar
  54. Erwin AT (1931) Nativity of the cucurbits. Bot Gaz 91:105–108CrossRefGoogle Scholar
  55. Erwin AT, Haber ES (1929) Species and varietal crosses in cucurbits. Bull Iowa Agric Expt Sta 263:341–372Google Scholar
  56. Esquinaz-Alcazar JT, Gulick PJ (1983) Genetic resources of Cucurbitaceae. IBPGR, RomeGoogle Scholar
  57. Esteras C, Gomez P, Monforte AJ et al (2012a) High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genom 13:80CrossRefGoogle Scholar
  58. Esteras C, Nuez F, Pico B (2012b) Genetic diversity studies in cucurbits using molecular tools. In: Wang Y-H, Behera TK, Kole C (eds) Genetics, genomics and breeding of cucurbits. CRC Press, Boca Raton, pp 140–198Google Scholar
  59. Ferriol M, Pico B (2008) Pumpkin and winter squash. In: Prohens J, Nuez F (eds) Handbook of plant breeding, vegetables I. Springer, New York, pp 317–349Google Scholar
  60. Ferriol M, Pico B, Nuez F (2003) Genetic diversity of germplasm collections of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282PubMedCrossRefGoogle Scholar
  61. Formisano G, Paris HS, Frusciante L, Ercolano MR (2010) Commercial Cucurbita pepo squash hybrids carrying disease resistance introgressed from Cucurbita moschata have high genetic similarity. Plant Genet Resour 8:198–203CrossRefGoogle Scholar
  62. Fowler C (2008) The Svalbard seed vault and crop security. Bioscience 58:190CrossRefGoogle Scholar
  63. Fowler C, Lower RL (2005) Politics of plant breeding. Plant Breed Revs 25:21–55Google Scholar
  64. Fuchs M, Gonsalves D (2007) Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu Rev Phytopathol 45:173–202PubMedCrossRefGoogle Scholar
  65. Fuchs M, Tricoli DM, Carney KJ, Schesser M, McFerson JR, Gonsalves D (1998) Comparative virus resistance and fruit yield of transgenic squash with single and multiple coat protein genes. Plant Dis 82:1350–1356CrossRefGoogle Scholar
  66. Gaba V, Zelcer A, Gal-On A (2004) Cucurbit biotechnology—the importance of virus resistance. In Vitro Cell Dev Biol-Plant 40:346–358CrossRefGoogle Scholar
  67. Gal-On A (2007) Zucchini yellow mosaic virus: insect transmission and pathogenicity—the tails of two proteins. Mol Plant Pathol 8:139–150PubMedCrossRefGoogle Scholar
  68. Gebhardt SE, Thomas RG (2002) Nutritive value of foods. USDA, ARS Home and Garden Bulletin 72, WashingtonGoogle Scholar
  69. Gerard J (1597) The herball or generall historie of plants. John Norton, London, pp 772–776Google Scholar
  70. Gilbert-Albertini F, Lecoq H, Pitrat M, Nicolet JL (1993) Resistance in Cucurbita moschata to watermelon mosaic virus type 2 and its genetic relation to resistance to zucchini yellow mosaic virus. Euphytica 69:231–237CrossRefGoogle Scholar
  71. Gisbert C, Pico B, Nuez F (2010–2011) Regeneration in selected Cucurbita spp. germplasm. Cucurbit Genet Coop Rep 33–34:53–54Google Scholar
  72. Goldman A (2004) The compleat squash. Artisan, New YorkGoogle Scholar
  73. Gong L, Stift G, Kofler R, Pachner M, Lelley T (2008a) Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor Appl Genet 117:37–48PubMedPubMedCentralCrossRefGoogle Scholar
  74. Gong L, Pachner M, Kalai K, Lelley T (2008b) SSR-based genetic linkage map of Cucurbita moschata and its synteny with Cucurbita pepo. Genome 51:878–887PubMedCrossRefGoogle Scholar
  75. Gong L, Paris HS, Nee MH, Stift G, Pachner M, Vollmann J, Lelley T (2012) Genetic relationships and evolution in Cucurbita pepo (pumpkin, squash, gourd) as revealed by simple sequence repeat polymorphisms. Theor Appl Genet 124:875–891PubMedPubMedCentralCrossRefGoogle Scholar
  76. Gong L, Paris HS, Stift G, Pachner M, Vollmann J, Lelley T (2013) Genetic relationships and evolution in Cucurbita as viewed with simple sequence repeat polymorphisms: the centrality of C. okeechobeensis. Genet Resour Crop Evol 60:1531–1546CrossRefGoogle Scholar
  77. Goodwin TW (1980) The biochemistry of the carotenoids. Chapman and Hall, New YorkCrossRefGoogle Scholar
  78. Gray A, Trumbull JH (1883) Review of DeCandolle’s origin of cultivated plants. Am J Sci 25:370–379CrossRefGoogle Scholar
  79. Haber ES, Argue CW (1927) The chemical composition of the Des Moines (Table Queen) squash as affected by the age of the specimens. Proc Am Soc Hort Sci 23:203–207Google Scholar
  80. Hayes CN, Winsor JA, Stephenson AG (2005) Environmental variation influences the magnitude of inbreeding depression in Cucurbita pepo subsp. texana. J Evol Biol 18:147–155PubMedCrossRefGoogle Scholar
  81. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231CrossRefGoogle Scholar
  82. Itle RA, Kabelka EA (2009) Correlation between L*a*b* color space values and carotenoid content in pumpkins and squash. HortScience 44:633–637Google Scholar
  83. Jahn M, Munger HM, McCreight JD (2002) Breeding cucurbit crops for powdery mildew resistance. In: Bélanger RR, Bushnell WR, Dik AJ, Carver TLW (eds) The powdery mildews, a comprehensive treatise. APS Press, St. Paul, pp 239–248Google Scholar
  84. Janick J, Paris HS, Parrish DC (2007) The cucurbits of Mediterranean antiquity: identification of taxa from ancient images and descriptions. Ann Bot 100:1441–1457PubMedPubMedCentralCrossRefGoogle Scholar
  85. Jarret RL, Levy IJ, Potter TL, Cermak SC, Merrick LC (2013) Seed oil content and fatty acid composition in a genebank collection of Cucurbita moschata Duchesne and C. argyrosperma C. Huber. Plant Genet Resour 11:149–157CrossRefGoogle Scholar
  86. Karlova K (2008) Cucurbitaceae genetic resources in the Czech gene bank, current status of the collection. In: Pitrat M (ed) Cucurbitaceae 2008. INRA, Avignon, pp 281–283Google Scholar
  87. Kathiravan K, Vengedesan G, Singer S, Steinitz B, Paris HS, Gaba V (2006) Adventitious regeneration in vitro occurs across a wide spectrum of squash (Cucurbita pepo) genotypes. Plant Cell Tissue Organ Cult 85:285–295CrossRefGoogle Scholar
  88. Kiss-Baba E, Panczel S, Simonyi K, Bisztray GD (2010) Investigations on the regeneration ability of squash cultivars. Acta Agron Hung 58:159–166CrossRefGoogle Scholar
  89. Konrad C (2000) Styrian Pumpkin-Seed Oil g.g.A—Over one million control numbers have been assigned. Cucurbit Genet Coop Rep 23:124–125Google Scholar
  90. Křistkova E, Lebeda A (2000) Resistance in Cucurbita pepo and Cucurbita maxima germplasm to watermelon mosaic potyvirus-2. Plant Genet Resour Newsl 121:47–52Google Scholar
  91. Kucharek T, Schenck N (1983) Gummy stem blight of cucurbits. Plant Pathology Fact Sheet, University of Florida, GainesvilleGoogle Scholar
  92. Kurtar ES, Sari N, Abak K (2002) Obtention of haploid embryos and plants through irradiated pollen technique in squash (Cucurbita pepo L.). Euphytica 127:335–344CrossRefGoogle Scholar
  93. Lebeda A, Cohen Y (2011) Cucurbit downy mildew (Pseudoperonospora cubensis)—biology, ecology, epidemiology, host-pathogen interaction and control. Eur J Plant Pathol 129:157–192CrossRefGoogle Scholar
  94. Lebeda A, Křistkova E (1993) Resistance of Cucurbita pepo and Cucurbita moschata varieties to cucurbit downy mildew (Pseudoperonospora cubensis). Plant Varieties Seeds 6:109–114Google Scholar
  95. Lebeda A, Křistkova E (1996a) Genotypic variation in field resistance of Cucurbita pepo cultivars to powdery mildew (Erysiphe cichoracearum). Genet Resourc Crop Evol 43:79–84CrossRefGoogle Scholar
  96. Lebeda A, Křistkova E (1996b) Resistance in Cucurbita pepo and Cucurbita maxima germplasms to cucumber mosaic virus. Genet Resourc Crop Evol 43:461–469CrossRefGoogle Scholar
  97. Lebeda A, Widrlechner MP, Staub J, Ezura H, Zalapa J, Křistkova E (2007) Cucurbits (Cucurbitaceae; Cucumis spp., Cucurbita spp., Citrullus spp.). In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement, vol 3. CRC Press, Boca Raton, pp 271–376Google Scholar
  98. Lebeda A, Křistkova E, Sedlakova B, McCreight JD, Coffey MD (2016) Cucurbit powdery mildews: methodology for objective determination and denomination of races. Eur J Plant Pathol. doi: 10.1007/s10658-015-0776-7 Google Scholar
  99. Lecoq H, Pitrat M, Clément M (1981) Identification et caractérisation d’un potyvirus provoquant la maladie du rabougrissement jaune du melon. Agronomie 1:827–834CrossRefGoogle Scholar
  100. Lecoq H, Wisler G, Pitrat M (1998) Cucurbit viruses: the classics and the emerging. In: McCreight JD (ed) Cucurbitaceae ’98. ASHS Press, Alexandria, pp 126–142Google Scholar
  101. Lelley T, Loy JB, Murkovic M (2010) Breeding oil seed pumpkins. In: Vollmann J, Rajcan I (eds) Handbook of plant breeding, vol 4., Oil cropsSpringer, New York, pp 469–492Google Scholar
  102. Lira R, Montes S (1994) Cucurbits (Cucurbita spp.). In: Hernandez JE, Leon J (eds) Neglected crops: 1492 from a different perspective. FAO, Rome, pp 63–77Google Scholar
  103. Lira R, Andres TC, Nee MH (1993) Cucurbita, Sechium, Sicana y Cyclanthera. In: Lira R (ed) Estudios taxonomicos y ecogeograficos de las Cucurbitaceae Latinoamericanas de importancia economica, vol 9. IPGRI, RomeGoogle Scholar
  104. Lisa V, Lecoq H (1984) Zucchini yellow mosaic virus. Descriptions of plant viruses 282. Commonwealth Mycological Institute/Association of Applied Biologists, KewGoogle Scholar
  105. Lisa V, Boccardo G, D’Agostino G, Dellavalle G, d’Aquilio M (1981) Characterization of a potyvirus that causes zucchini yellow mosaic. Phytopathology 71:667–672CrossRefGoogle Scholar
  106. Lopez Anido F, Cravero V, Asprelli P, Firpo T, Garcia SM, Cointry E (2004) Heterotic patterns in hybrids involving cultivar-groups of summer squash, Cucurbita pepo L. Euphytica 135:355–360CrossRefGoogle Scholar
  107. Lorenz OA (1949) Growth rates and chemical composition of fruits of four varieties of summer squash. Proc Am Soc Hort Sci 54:385–390Google Scholar
  108. Loy JB (1988) Improving seed yield in hull-less strains of Cucurbita pepo. Cucurbit Genet Coop Rep 11:72–73Google Scholar
  109. Loy JB (2000) Seed development in Cucurbita pepo: an overview with emphasis on hull-less seeded genotypes of pumpkin. Cucurbit Genet Coop Rep 23:89–95Google Scholar
  110. Loy JB (2004) Morpho-physiological aspects of productivity and quality in squash and pumpkins (Cucurbita spp.). Crit Rev Plant Sci 23:337–363CrossRefGoogle Scholar
  111. Loy JB (2006a) Improving eating quality and storage life in acorn squash. HortScience 40:1099Google Scholar
  112. Loy JB (2006b) Harvest period and storage affect biomass partitioning and attributes of eating quality in acorn squash (Cucurbita pepo). In: Holmes GJ (ed) Proceedings of Cucurbitaceae 2006. Universal Press, Raleigh, pp 568–577Google Scholar
  113. Loy JB (2012) Breeding squash and pumpkins. In: Wang Y-H, Behera TK, Kole C (eds) Genetics, genomics and breeding of cucurbits. CRC Press, Boca Raton, pp 93–139Google Scholar
  114. Loy JB, Clark S, Xiao Q, Loy R (2004) Physiological changes in acorn squash during development and storage as related to eating quality. HortScience 39:460–461Google Scholar
  115. MacGillivray JH, Hanna GC, Minges PA (1942) Vitamin, protein, calcium, iron, and calorie yield of vegetables per acre and per acre man-hour. Proc Am Soc Hort Sci 41:293–297Google Scholar
  116. Mansour EH, Dworschak E, Lugasi A, Barna E, Gergely A (1993) Nutritive value of pumpkin (Cucurbita pepo Kakai 35) seed products. J Sci Food Agric 61:73–78CrossRefGoogle Scholar
  117. Martinez C, Manzano S, Megias Z, Garrido D, Pico B, Jamilena M (2014) Sources of parthenocarpy for zucchini breeding. Euphytica 200:349–362CrossRefGoogle Scholar
  118. Martyn RD, McLaughlin RJ (1983) Susceptibility of summer squash to the watermelon wilt pathogen (Fusarium oxysporum f. sp. niveum). Plant Dis 67:263–266CrossRefGoogle Scholar
  119. McCollum TG (1990) Gene B influences susceptibility to chilling injury in Cucurbita pepo. J Am Soc Hort Sci 115:618–622Google Scholar
  120. McGrath MT (2002a) Alternatives to the protectant fungicide chlorothalonil evaluated for managing powdery mildew of cucurbits. In: Maynard DN (ed) Cucurbitaceae 2002. ASHS Press, Alexandria, pp 213–221Google Scholar
  121. McGrath MT (2002b) Attractiveness to cucumber beetles and susceptibility to bacterial wilt varies among cucurbit crop types and cultivars. In: Maynard DN (ed) Cucurbitaceae 2002. ASHS Press, Alexandria, pp 222–227Google Scholar
  122. McGrath MT, Staniszewska H (1996) Management of powdery mildew in summer squash with host resistance, disease threshold-based fungicide programs, or an integrated program. Plant Dis 80:1044–1052CrossRefGoogle Scholar
  123. Mencarelli F, Anelli G, Tesi R (1982) Idoneità alla conservazione di alcune cultivars di carciofo e di zucca da zucchini. Frutticoltura 44(8):47–50Google Scholar
  124. Merrick LC (1986) Wild and cultivated cucurbits from the Sierra Madre Occidental of northwest Mexico and the Rio Balsas Valley of southeast Mexico. Final Report, IBPGR Project #85-79Google Scholar
  125. Merrick LC (1995) Squashes, pumpkins and gourds. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific and Technical, London, pp 97–105Google Scholar
  126. Miké V (1977) Theories of quasi-linkage and “affinity”: some implications for population structure. Proc Natl Acad Sci USA 74:3513–3517PubMedPubMedCentralCrossRefGoogle Scholar
  127. Mookann M (2015) Direct organogenesis from cotyledonary node explants of Cucurbita pepo (L.)—an important zucchini type vegetable crop. Am J Plant Sci 6:157–162CrossRefGoogle Scholar
  128. Munger HM (1990) Availability and use of interspecific populations involving Cucurbita moschata and C pepo. Cucurbit Genet Coop Rep 13:49Google Scholar
  129. Murkovic M, Mülleder U, Neuteufl H (2002) Carotenoid content in different varieties of pumpkins. J Food Comp Anal 15:633–638CrossRefGoogle Scholar
  130. Murovec J (2015) Phenotypic and genetic diversity in pumpkin accessions with mutated seed coats. HortScience 50:211–217Google Scholar
  131. Murphy EF, Hepler PR, True RH (1966) An evaluation of the sensory quality of inbred lines of squash (Cucurbita maxima). Proc Am Soc Hort Sci 89:483–490Google Scholar
  132. Nameth ST, Dodds JA, Paulus AO, Laemmlen FF (1986) Cucurbit viruses of California: an ever-changing problem. Plant Dis 70:8–12CrossRefGoogle Scholar
  133. Naudin C (1856) Nouvelles recherches sur les caractères spécifiques et les variétés des plantes du genre Cucurbita. Ann Sci Nat Bot 6:5–73Google Scholar
  134. Nee M (1990) The domestication of Cucurbita (Cucurbitaceae). Econ Bot 44(3):56–68CrossRefGoogle Scholar
  135. Nerson H (2005) Effects of fruit shape and plant density on seed yield and quality of squash. Sci Hort 105:293–304CrossRefGoogle Scholar
  136. Nerson H, Paris HS, Paris EP (2000) Fruit shape, size and seed yield in Cucurbita pepo. In: Katzir N, Paris HS (eds) Proceedings of Cucurbitaceae 2000. vol 510, Acta Hort, pp 227–230Google Scholar
  137. Norrmann R, Haarberg J (1980) Nature and language. A semiotic study of cucurbits in literature. Routledge & Kegan Paul, LondonGoogle Scholar
  138. Nuez F, Fernandez de Cordoba P, Ferriol M, Valcarcel JV, Pico B, Diez MJ (2000) Cucurbita spp. and Lagenaria siceraria collection at the center for conservation and breeding of agricultural biodiversity (CCMAV), polytechnical university of Valencia. Cucurbit Genet Coop Rep 23:60–61Google Scholar
  139. Ortiz-Alamillo O, Garza-Ortega S, Sanchez-Estrada A, Troncoso-Rojas R (2007) Yield and quality of the interspecific cross Cucurbita argyrosperma × C. moschata. Cucurbit Genet Coop Rep 30:56–59Google Scholar
  140. Pachner M, Paris HS, Lelley T (2009) Genes for resistance to zucchini yellow mosaic in tropical pumpkin. J Hered 102:330–335CrossRefGoogle Scholar
  141. Pachner M, Paris HS, Winkler J, Lelley T (2015) Phenotypic and marker-assisted pyramiding of genes for resistance to zucchini yellow mosaic virus in oil-seed pumpkin (Cucurbita pepo). Plant Breeding 134:121–128CrossRefGoogle Scholar
  142. Padley LD Jr, Kabelka EA, Roberts PD, French R (2008) Evaluation of Cucurbita pepo accessions for crown rot resistance to isolates of Phytophthora capsici. HortScience 43:1996–1999Google Scholar
  143. Paris HS (1986) A proposed subspecific classification for Cucurbita pepo. Phytologia 61:133–138Google Scholar
  144. Paris HS (1988) Complementary genes for orange fruit flesh color in Cucurbita pepo. HortScience 23:601–603Google Scholar
  145. Paris HS (1989) Historical records, origins, and development of the edible cultivar groups of Cucurbita pepo (Cucurbitaceae). Econ Bot 43:423–443CrossRefGoogle Scholar
  146. Paris HS (1994) Genetic analysis and breeding of pumpkins and squash for high carotene content. In: Linskens HF, Jackson JF (eds) Modern Methods of Plant Analysis, vol 16., Vegetables and Vegetable ProductsSpringer Verlag, Berlin, pp 93–115Google Scholar
  147. Paris HS (1996) Summer squash: history, diversity, and distribution. HortTechnology 6:6–13Google Scholar
  148. Paris HS (2000) History of the cultivar-groups of Cucurbita pepo. Hort Revs 25:71–170Google Scholar
  149. Paris HS (2001) Characterization of the Cucurbita pepo collection at the Newe Ya‘ar Research Center, Israel. Plant Genet Resour Newsl 126:Cover, pp 41–45Google Scholar
  150. Paris HS (2007) The drawings of Antoine Nicolas Duchesne for his natural history of the gourds. In: Érard C (ed) Les planches et les mots. Muséum National d’Histoire Naturelle, ParisGoogle Scholar
  151. Paris HS (2008) Summer squash. In: Prohens J, Nuez F (eds) Handbook of plant breeding, vegetables I. Springer, New York, pp 351–379Google Scholar
  152. Paris HS (2010) Multiple flowering as an adaptation of summer squash for growing in protected culture. In: Thies JA, Kousik S, Levi A (eds) Cucurbitaceae 2010 proceedings. ASHS Press, Alexandria, pp 88–90Google Scholar
  153. Paris HS (2015) Origin and emergence of the sweet dessert watermelon, Citrullus lanatus. Ann Bot 116:133–148PubMedCrossRefGoogle Scholar
  154. Paris HS, Brown RN (2005) The genes of pumpkin and squash. HortScience 40:1620–1630Google Scholar
  155. Paris HS, Cohen S (2000) Oligogenic inheritance for resistance to zucchini yellow mosaic virus in Cucurbita pepo. Ann Appl Biol 136:209–214CrossRefGoogle Scholar
  156. Paris HS, Cohen R (2002) Powdery mildew-resistant summer squash hybrids having higher yields than their susceptible, commercial counterparts. Euphytica 124:121–128CrossRefGoogle Scholar
  157. Paris HS, Edelstein M (2001) Same gene for bush growth habit in Cucurbita pepo subsp. pepo as in C. pepo subsp. ovifera. Cucurbit Genet Coop Rep 24:80–81Google Scholar
  158. Paris HS, Janick J (2008) Reflections on linguistics as an aid to taxonomical identification of ancient Mediterranean cucurbits: the piqqus of the faqqous. In: Pitrat M (ed) Cucurbitaceae 2008. INRA, Avignon, pp 43–51Google Scholar
  159. Paris HS, Nerson H (1986) Genes for intense pigmentation of squash. J Hered 77:403–409Google Scholar
  160. Paris HS, Nerson H (2003) Seed dimensions in the subspecies and cultivar-groups of Cucurbita pepo. Genet Resour Crop Evol 50:615–625CrossRefGoogle Scholar
  161. Paris HS, Edelstein M, Nerson H, Burger Y, Karchi Z, Lozner D (1985) ‘Orangetti’ and ‘Go-getti’, two new spaghetti squash hybrids (Hebrew, English abstr). Hassadeh 66:254–256Google Scholar
  162. Paris HS, Nerson H, Karchi Z (1986a) Yield and yield quality of courgette as affected by plant density. J Hort Sci 61:295–301Google Scholar
  163. Paris HS, Nerson H, Karchi Z (1986b) Effect of fruit color on harvest speed of zucchini. Can J Plant Sci 66:811–815CrossRefGoogle Scholar
  164. Paris HS, Nerson H, Burger Y (1987) Leaf silvering of Cucurbita. Can J Plant Sci 67:593–598CrossRefGoogle Scholar
  165. Paris HS, Stoffella PJ, Powell CA (1993a) Sweetpotato whitefly, drought stress, and leaf silvering of squash. HortScience 28:157–158Google Scholar
  166. Paris HS, Stoffella PJ, Powell CA (1993b) Susceptibility to leaf silvering in the cultivar groups of summer squash. Euphytica 69:69–72CrossRefGoogle Scholar
  167. Paris HS, Yonash N, Portnoy V, Mozes-Daube N, Tzuri G, Katzir N (2003) Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using DNA markers. Theor Appl Genet 106:971–978PubMedGoogle Scholar
  168. Paris HS, Daunay M-C, Pitrat M, Janick J (2006) First known image of Cucurbita in Europe, 1503—1508. Ann Bot 98:41–47PubMedPubMedCentralCrossRefGoogle Scholar
  169. Paris HS, Strachan J, Frobish M, Johnson WC, Gusmini G (2007) New plant variety protection (PVP) forms for pumpkin/squash/gourd. Cucurbit Genet Coop Rep 30(33–34):71–93Google Scholar
  170. Paris HS, Lebeda A, Křistkova E, Andres TC, Nee MH (2012) Parallel evolution under domestication and phenotypic differentiation of the cultivated subspecies of Cucurbita pepo (Cucurbitaceae). Econ Bot 66:71–90CrossRefGoogle Scholar
  171. Paris HS, Doron-Faigenboim A, Reddy UK, Donahoo R, Levi A (2015) Genetic relationships in Cucurbita pepo (pumpkin, squash, gourd) as viewed with highfrequency oligonucleotide-targeting active gene (HFO–TAG) markers. Genet Resour Crop Evol 62:1095–1111CrossRefGoogle Scholar
  172. Peng J, Korol AB, Fahima T, Röder MS, Ronin YI, Li YC, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531PubMedPubMedCentralCrossRefGoogle Scholar
  173. Petersen JB, Sidell NA (1996) Mid-Holocene evidence of Cucurbita sp. from central Maine. Am Antiq 61:685–698CrossRefGoogle Scholar
  174. Provvidenti R (1990) Viral diseases and genetic sources of resistance in Cucurbita species. In: Bates DM, Robinson RW, Jeffrey C (eds) Biology and utilization of the Cucurbitaceae. Comstock, Ithaca, pp 427–435Google Scholar
  175. Provvidenti R (1997) New American summer squash cultivars possessing a high level of resistance to a strain of zucchini yellow mosaic virus from China. Cucurbit Genet Coop Rep 20:57–58Google Scholar
  176. Provvidenti R, Robinson RW, Munger HM (1978) Resistance in feral species to six viruses infecting Cucurbita. Plant Dis Rptr 62:326–329Google Scholar
  177. Rehm S, Enslin PR, Meeuse ADJ, Wessels JH (1957) Bitter principles of the Cucurbitaceae, VII—the distribution of bitter principles in this plant family. J Sci Food Agric 8:679–686CrossRefGoogle Scholar
  178. Rhodes AM (1959) Species hybridization and interspecific gene transfer in the genus Cucurbita. Proc Am Soc Hort Sci 74:546–551Google Scholar
  179. Robinson RW, Decker-Walters DS (1997) Cucurbits. CAB International, WallingfordGoogle Scholar
  180. Robinson RW, Provvidenti R (1997) Differential response of Cucurbita pepo cultivars to strains of zucchini yellow mosaic virus. Cucurbit Genet Coop Rep 20:58–59Google Scholar
  181. Sanjur OI, Piperno DR, Andres TC, Wessel-Beaver L (2002) Phylogenetic relationships among domesticated and wild species of Cucurbita (Cucurbitaceae) inferred from a mitochondrial gene: implications for crop plant evolution and areas of origin. Proc Natl Acad Sci USA 99:535–540PubMedPubMedCentralCrossRefGoogle Scholar
  182. Schaefer H, Renner SS (2011a) Cucurbitaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol 10., EudicotsSpringer, New York, pp 112–174Google Scholar
  183. Schaefer H, Renner SS (2011b) Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon 60:122–138Google Scholar
  184. Schaefer H, Heibl C, Renner SS (2009) Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc R Soc B 276:843–851PubMedPubMedCentralCrossRefGoogle Scholar
  185. Schaffer AA, Paris HS, Ascarelli IM (1986) Carotenoid and starch conent of near-isogenic B+B+ and BB genotypes of Cucurbita. J Am Soc Hort Sci 111:780–783Google Scholar
  186. Schales FD, Isenberg FM (1963) The effect of curing and storage on chemical composition and taste acceptability of winter squash. Proc Am Soc Hort Sci 83:667–674Google Scholar
  187. Scott GW (1934) Observations on some inbred lines of bush types of C. pepo. Proc Am Soc Hort Sci 32:480Google Scholar
  188. Shah P, Singh NK, Khare N, Rathore M, Anandhan S, Arif M, Singh RK, Das SC, Ahmed Z, Kumar N (2008) Agrobacterium mediated genetic transformation of summer squash (Cucurbita pepo L. cv. Australian green) with cbf-1 using a two vector system. Plant Cell Tiss Organ Cult 95:363–371CrossRefGoogle Scholar
  189. Shalaby TA (2007) Factors affecting haploid induction through in vitro gynogenesis in summer squash (Cucurbita pepo L.). Sci Hort 115:1–6CrossRefGoogle Scholar
  190. Sherman M, Elmstron GW, Allen JJ (1985) Storage characteristics of three cultivars of yellow summer squash (Cucurbita pepo L.). Proc Fla State Hort Soc 98:216–218Google Scholar
  191. Sherman M, Paris HS, Allen JJ (1987) Storability of summer squash as affected by gene B and genetic background. HortScience 22:920–922Google Scholar
  192. Simon ML (2011) Evidence for variability among squash seeds from the Hoxie site (11CK4), Illinois. J Archaeol Sci 38:2079–2093CrossRefGoogle Scholar
  193. Simons JN, Stoffella PJ, Shuler KD, Raid RN (1988) Silver-leaf of squash in south Florida. Proc Fla State Hort Soc 101:397–399Google Scholar
  194. Sinnott EW (1935) Evidence for the existence of genes controlling shape. Genetics 20:12–21PubMedPubMedCentralGoogle Scholar
  195. Sinnott EW, Durham GB (1929) Development history of the fruit in lines of Cucurbita pepo differing in fruit shape. Bot Gaz 87:411–421CrossRefGoogle Scholar
  196. Sinnott EW, Kaiser S (1934) Two types of genetic control over the development of shape. Bull Torrey Bot Club 61:1–7CrossRefGoogle Scholar
  197. Smith BD (1997) The initial domestication of Cucurbita pepo in the Americas 10,000 years ago. Science 276:932–934CrossRefGoogle Scholar
  198. Stephenson AG, Devlin B, Horton JB (1988) The effects of seed number and prior fruit dominance on the pattern of fruit production in Cucurbita pepo (zucchini squash). Ann Bot 62:653–661Google Scholar
  199. Teppner H (2000) Cucurbita pepo (Cucurbitaceae)—history, seed coat types, thin coated seeds and their genetics. Phyton 40:1–42Google Scholar
  200. Teppner H (2004) Notes on Lagenaria and Cucurbita (Cucurbitaceae)—review and new contributions. Phyton 44:245–308Google Scholar
  201. Tricoli DM, Carney KJ, Russell PF, Quemada HD, McMaster RJ, Reynolds JF, Deng RZ (2002) Transgenic plants expressing DNA constructs containing a plurality of genes to impart virus resistance. United States Patent 6(337):431Google Scholar
  202. Trumbull JH (1876) Vegetables cultivated by the American Indians. Bull Torrey Bot Club 6:69–71CrossRefGoogle Scholar
  203. Umiel N, Friedman H, Tragerman M, Mattan E, Paris HS (2007) Comparison of some flower characteristics of Cucurbita pepo accessions. Cucurbit Genet Coop Rep 27:35–37Google Scholar
  204. Vining KJ, Loy JB (1998) Seed development and seed fill in hull-less seeded cultigens of pumpkin (Cucurbita pepo L.). In: McCreight JD (ed) Cucurbitaceae ’98. ASHS Press, Alexandria, pp 64–69Google Scholar
  205. Vinter V, Křistkova A, Lebeda A, Křistkova E (2004) Descriptor lists for genetic resources of the genus Cucumis and cultivated species of the genus Cucurbita. In: Lebeda A, Paris HS (eds) Proceedings of Cucurbitaceae 2004. Palacky University, Olomouc, pp 95–99Google Scholar
  206. Wagner FS (2000) The health value of Styrian pumpkin-seed oil—science and fiction. Cucurbit Genet Coop Rep 23:122–123Google Scholar
  207. Walkey DGA, Pink DAC (1984) Resistance in vegetable marrow and other Cucurbita spp. to two British stains of cucumber mosaic virus. J Agric Sci Camb 102:197–205CrossRefGoogle Scholar
  208. Wall JR, York TL (1960) Gametic diversity as an aid to interspecific hybridization in Phaseolus and in Cucurbita. Proc Am Soc Hort Sci 75:419–428Google Scholar
  209. Weiling F (1959) Genomanalytische Untersuchungen bei Kürbis (Cucurbita L.). Der Züchter 29:161–179Google Scholar
  210. Wessel-Beaver L (2000) Cucurbita argyrosperma sets fruits in fields where C. moschata is the only pollen source. Cucurbit Genet Coop Rep 23:62–63Google Scholar
  211. Wessel-Beaver L, Cuevas HE, Andres TC, Piperno DR (2004) Genetic compatibility between Cucurbita moschata and C. argyrosperma. In: Lebeda A, Paris HS (eds) Proceedings of Cucurbitaceae 2004. Palacky University, Olomouc, pp 393–400Google Scholar
  212. Whitaker TW (1947) American origin of the cultivated cucurbits. Ann Mo Bot Gard 34:101–111CrossRefGoogle Scholar
  213. Whitaker TW (1962) Breeding squash and pumpkins. In: Kappert H, Rudorf W (eds) Handbuch der pflanzenzuchtung, vol 6. Paul Parey, Berlin, pp 331–350Google Scholar
  214. Whitaker TW (1974) Cucurbita. In: King RC (ed) Handbook of genetics. Plenum, New York, pp 135–144CrossRefGoogle Scholar
  215. Whitaker TW, Bemis WP (1964) Evolution in the genus Cucurbita. Evolution 18:553–559CrossRefGoogle Scholar
  216. Whitaker TW, Bemis WP (1975) Origin and evolution of the cultivated Cucurbita. Bull Torrey Bot Club 102:362–368CrossRefGoogle Scholar
  217. Whitaker TW, Carter GF (1946) Critical notes on the origin and domestication of the cultivated species of Cucurbita. Am J Bot 33:10–15CrossRefGoogle Scholar
  218. Whitaker TW, Cutler HC (1965) Cucurbits and cultures in the Americas. Econ Bot 19:344–349CrossRefGoogle Scholar
  219. Whitaker TW, Cutler HC (1971) Prehistoric cucurbits from the Valley of Oaxaca. Econ Bot 25:123–127CrossRefGoogle Scholar
  220. Whitaker TW, Davis GN (1962) Cucurbits. Interscience, New YorkGoogle Scholar
  221. Whitaker TW, Robinson RW (1986) Squash breeding. In: Bassett MJ (ed) Breeding vegetable crops. AVI Publishing, Westport, pp 209–242Google Scholar
  222. Wien HC (1997) The physiology of vegetable crops. CABI, WallingfordGoogle Scholar
  223. Wien HC, Stapleton SC, Maynard DN, McClurg C, Nyankanga R, Riggs D (2002) Regulation of female flower development in pumpkin (Cucurbita spp.) by temperature and light. In: Maynard DN (ed) Cucurbitaceae 2002. ASHS Press, Alexandria, pp 307–315Google Scholar
  224. Wilson HD, Doebley J, Duvall M (1992) Chloroplast DNA diversity among wild and cultivated members of Cucurbita. Theor Appl Genet 84:859–865PubMedGoogle Scholar
  225. Wilson HD, Lira R, Rodriguez I (1994) Crop/weed gene flow: Cucurbita argyrosperma Huber and C. fraterna L. H. Bailey (Cucurbitaceae). Econ Bot 48:293–300CrossRefGoogle Scholar
  226. Winkler J (2000) Breeding of hull-less seeded pumpkins (Cucurbita pepo) for the use of the oil. In: Katzir N, Paris HS (eds) Proceedings of Cucurbitaceae 2000, vol 510. Acta Hort, pp 123–128Google Scholar
  227. Wyatt LE, Strickler SR, Mueller LA, Mazourek M (2015) An acorn squash (Cucurbita pepo subsp ovifera) fruit and seed transcriptome as a resource for the study of fruit traits in Cucurbita. Hort Res 2:14070CrossRefGoogle Scholar
  228. Yokomi RK, Hoelmer KA, Osborne LS (1990) Relationships between the sweetpotato whitefly and the squash silverleaf disorder. Phytopathology 80:895–900CrossRefGoogle Scholar
  229. Zack CD, Loy JB (1981) Effect of fruit development on vegetative growth of squash. Can J Plant Sci 61:673–676CrossRefGoogle Scholar
  230. Zheng YH, Alverson AJ, Wang QF, Palmer JD (2013) Chloroplast phylogeny of Cucurbita: evolution of the domesticated and wild species. J Syst Evol 51:326–334CrossRefGoogle Scholar
  231. Zhiteneva NE (1930) The world’s assortment of pumpkins (Russian, English abstr.). Trudy Prikl Bot Genet Selek 23:157–207Google Scholar
  232. Zitter TA, Kyle MM (1992) Impact of powdery mildew and gummy stem blight on collapse of pumpkins (Cucurbita pepo L.). Cucurbit Genet Coop Rep 15:93–95Google Scholar
  233. Zitter TA, Hopkins DL, Thomas CE (1996) Compendium of cucurbit diseases. American Phytopathological Society, St. PaulGoogle Scholar
  234. Zraidi A, Lelley T (2004) Genetic map for pumpkin Cucurbita pepo using random amplified polymorphic DNA markers. In: Lebeda A, Paris HS (eds) Progress in cucurbit genetics and breeding research, proceedings of Cucurbitaceae 2004. Palacky University, Olomouc, pp 507–514Google Scholar
  235. Zraidi A, Stift G, Pachner M, Shojaeiyan A, Gong L, Lelley T (2007) A consensus map for Cucurbita pepo. Mol Breed 20:375–388CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Newe Ya‘ar Research CenterAgricultural Research OrganizationRamat YishayIsrael

Personalised recommendations