Skip to main content
Log in

Identification of quantitative trait loci controlling sucrose content based on an enriched genetic linkage map of sugarcane (Saccharum spp. hybrids) cultivar ‘LCP 85-384’

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Sucrose content is one of the most important traits considered in sugarcane breeding. Since sugarcane cultivars possess >100 chromosomes (2n = 100–130) and are genetically complex polyploid and aneuploids, identification of quantitative trait loci (QTLs) associated with sucrose content is considered the best option to improve sucrose content through molecular breeding. A preliminary genetic linkage map of Louisiana sugarcane cultivar ‘LCP 85-384’ from a previous study was enriched using 65 additional polymorphism simple-sequence-repeats (SSR) primer-pairs to identify more co-segregated and homologous groups (CGs and HGs) and QTLs controlling sucrose content. Eighty-four SSR primer-pairs produced 456 markers, of which 441 were polymorphic. Both simplex (993) and duplex (225) amplified fragment length polymorphism (AFLP) and target region amplification polymorphism (TRAP) markers reported previously were also included to construct the LCP 85-384 map. These simplex and duplex markers were assigned to 108 CGs successfully using JoinMap®. This map had a cumulative genome length of 7406.3 cM that included 675 AFLP (69.8 %), 90 TRAP (9.3 %), and 202 SSR (20.9 %) markers. The 202 SSR markers were assigned to 65 CGs and 8 HGs. Based on this map, 24 putative QTLs affecting sucrose content were identified. Five QTLs were unlinked and the other 19 QTLs were located on nine CGs within four HGs. Of these QTLs, 11 had an effect in both plant-cane (20.33 %) and first-stubble (25.68 %) crops. A higher efficiency of QTLs’ identification with AFLP, TRAP and SSR markers in such a genetically complex crop, proposes its wider utility in molecular breeding in sugarcane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provide extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110:789–801

    Article  PubMed  CAS  Google Scholar 

  • Aitken KS, Jackson PA, McIntyre CL (2006) Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp.) cultivar × Saccharum officinarum population. Theor Appl Genet 112:1306–1317

    Article  PubMed  CAS  Google Scholar 

  • Aitken KS, Jackson PA, McIntyre CL (2007) Construction of genetic linkage map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. Genome 50:742–756

    Article  PubMed  CAS  Google Scholar 

  • Alwala S, Suman A, Arro JA, Veremis JC, Kimbeng CA (2006) Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci 46:448–455

    Article  CAS  Google Scholar 

  • Alwala S, Kimbeng CA, Veremis JC, Gravois KA (2008) Linkage mapping and genome analysis in Saccharum interspecific cross using AFLP, SRAP and TRAP markers. Euphytica 164:37–51

    Article  CAS  Google Scholar 

  • Alwala S, Kimbeng CA, Veremis JC, Gravois KA (2009) Identification of molecular markers associated with sugar-related traits in a Saccharum interspecific cross. Euphytica 167:127–142

    Article  CAS  Google Scholar 

  • Asnaghi C, Paulet F, Kaye C, Grivet L, Deu M, Glaszmann JC, D’Hont A (2000) Application of synteny across Poaceae to determine the map location of a sugarcane rust resistance gene. Theor Appl Genet 101:962–969

    Article  CAS  Google Scholar 

  • Asnaghi C, Roques D, Ruffel S, Kaye C, Hoarau JY, Te‘lismart H, Girard JC, Raboin LM, Risterucci AM, Grivet L, D’Hont A (2004) Targeted mapping of a sugarcane rust resistance gene (Bru1) using bulked segregant analysis and AFLP markers. Theor Appl Genet 108:759–764

    Article  PubMed  CAS  Google Scholar 

  • Bischoff KP, Gravois KA (2004) The development of new sugarcane varieties at the LSU Ag Center. J Am Soc Sugar Cane Technol 24:142–164

    Google Scholar 

  • Cheng XM, Xu JS, Xia S, Gu JX, Yang Y, Fu J, Qian XJ, Zhang SC, Wu JS, Liu K (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Cordeiro GM, Taylor GO, Henry RJ (2000) Characterisation of microsatellite markers from sugarcane (Saccharum spp.), a highly polyploid species. Plant Sci 155:161–168

    Article  PubMed  CAS  Google Scholar 

  • Cunff LL, Garsmeur O, Raboin LM, Pauquet J, Telismart H, Selvi A, Grivet L, Philippe R, Begum D, Deu M, Costet L, Wing R, Glaszmann JC, D’Hont A (2008) Diploid/polyploidy syntenic shuttle mapping and haplotype-specific chromosome walking toward a rust resistance gene (Bru1) in highly polyploidy sugarcane (2n 12 × 115). Genetics 180:649–660

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Hont A, Ison D, Alix K, Roux C, Glaszmann G (1998) Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome 41:221–225

    Article  Google Scholar 

  • Da Silva JAG (2001) Preliminary analysis of microsatellite markers derived from sugarcane expressed sequence tags (ESTs). Genet Mol Biol 24:155–159

    Article  Google Scholar 

  • Daugrois JH, Grivet L, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, D’Hont A (1996) Putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570’. Theor Appl Genet 92:1059–1064

    Article  PubMed  CAS  Google Scholar 

  • Dufour P, Grivet L, D’Hont A, Deu M, Trouche G, Glaszmann JC, Hamon P (1996) Comparative genetic mapping between duplicated segments on maize chromosomes 3 and 8 and homoeologous regions in sorghum and sugarcane. Theor Appl Genet 92:1024–1030

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Longman Group, Harlow

    Google Scholar 

  • Garcia AAF, Kido EA, Meza AN, Souza HMB, Pinto LR, Pastina MM, Leite CS, Da Silva JAG, Ulian EC, Figueira A, Souza AP (2006) Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum likelihood approach for estimation of linkage and linkage phases. Theor Appl Genet 112:298–314

    Article  PubMed  CAS  Google Scholar 

  • Gravois KA, Bischoff KP (2008) New sugarcane varieties to the rescue. La Agric 51:14–16

    Google Scholar 

  • Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP mapping in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guimaráes CT, Sills GR, Sobral BWS (1997) Comparative mapping of Andropogoneae: Saccharum (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci USA 94:14261–14266

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97

    Article  CAS  Google Scholar 

  • Hoarau JY, Grivet L, Offmann B, Raboin LM, Diorflar JP, Payet J, Hellmann M, D’Hont A, Glaszmann JC (2002) Genetic dissection of a modern sugarcane cultivar (Saccharum spp.). II. Detection of QTLs for yield components. Theor Appl Genet 105:1027–1037

    Article  PubMed  Google Scholar 

  • Jackson PA (2005) Breeding for improved sugar content in sugarcane. Field Crops Res 92:277–290

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lakshmanan P, Geijskes RJ, Aitken KS, Grof CLP, Bonnet GD, Smith GR (2005) Sugarcane biotechnology: the challenges and opportunities. In Vitro Cell Dev Biol Plant 41:345–363

    Article  CAS  Google Scholar 

  • Legendre BL, Henderson MT (1972) The history and development of sugar yield calculations. J Am Soc Sugar Cane Technol 2:10–18

    Google Scholar 

  • Liu P, Que Y, Pan Y-B (2011) Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech 13:129–136

    Article  CAS  Google Scholar 

  • Lowe A, Moule C, Trick M, Edwards K (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Liu SC, Lin YR, Da Silva JAG, Wilson W, Braga D, van Devnze A, Wenslaff F, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ming R, Liu SC, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res 11:2075–2084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ming R, Liu S-C, Bowers JE, Moore PH, Irvine JE, Paterson AH (2002a) Construction of Saccharum consensus genetic map from two interspecific crosses. Crop Sci 42:570–583

    Article  CAS  Google Scholar 

  • Ming R, Wang YW, Draye X, Moore PH, Irvine JE, Paterson AH (2002b) Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345

    Article  PubMed  CAS  Google Scholar 

  • Oliveira KM, Pinto LR, Marconi TG, Margarido GRA, Pastina MM, Teixeira LHM, Figueira AV, Ulian EC, Garcia AAF, Souza AP (2007) Functional integrated genetic linkage map based on EST markers for a sugarcane (Saccharum spp.) commercial cross. Mol Breed 20:189–208

    Article  CAS  Google Scholar 

  • Oliveira KM, Pinto LR, Marconi TG, Mollinari M, Ulian EC, Chabregas SM, Falco MC, Burnquist WA, Garcia AF, Souza AP (2009) Characterization of new polymorphic functional markers for sugarcane. Genome 52:191–209

    Article  PubMed  CAS  Google Scholar 

  • Pan Y-B (2006) Highly polymorphic microsatellite DNA markers for sugarcane germplasm evaluation and variety identity testing. Sugar Tech 8:246–256

    Article  CAS  Google Scholar 

  • Pan Y-B, Burner DM, Legendre BL (2000) An assessment of the phylogenetic relationship among sugarcane and related taxa based on the nucleotide sequence of 5S rRNA intergenic spacers. Genetica 108:285–295

    Article  PubMed  CAS  Google Scholar 

  • Pan Y-B, Cordeiro GM, Richard EP Jr, Henry RJ (2003) Molecular genotyping of sugarcane clones with microsatellite DNA markers. Maydica 48:319–329

    Google Scholar 

  • Pan Y-B, Scheffler BS, Richard EP Jr (2007) High throughput genotyping of commercial sugarcane clones with microsatellite (SSR) DNA markers. Sugar Tech 9:176–181

    Google Scholar 

  • Parida SK, Kalia SK, Kaul S, Dalal V, Hemprapha G, Selvi A, Pandit A, Singh A, Gaikwad K, Sharma TR, Srivastava PS, Singh NK, Mohapatra T (2009) Informative genomic microsatellite markers for efficient genotyping application in sugarcane. Theor Appl Genet 118:327–338

    Article  PubMed  CAS  Google Scholar 

  • Parida SK, Pandit A, Gaikwad K, Sharma TR, Srivastava PS, Singh NK, Mohapatra T (2010) Functionally relevant microsatellites in sugarcane unigenes. BMC Plant Biol 10:251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinto LR, Garcia AAF, Pastina MM, Teixeira LHM, Bressiani JA, Ulian EC, Bidoia MAP, Souza AP (2010) Analysis of genomic and functional RFLP derived markers associated with sucrose content, fiber and yield QTLs in a sugarcane (Saccharum spp.) commercial cross. Euphytica 172:313–327

    Article  CAS  Google Scholar 

  • Piperidis N, Jackson PA, D’Hont A, Besse P, Hoarau JY, Courtois B, Aitken KS, McIntyre CL (2008) Comparative genetics in sugarcane enables structured map enhancement and validation of marker-trait associations. Mol Breed 21:233–247

    Article  Google Scholar 

  • Piquemal J, Cinquin E, Couton F (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  PubMed  CAS  Google Scholar 

  • Podlich DW, Winkler CR, Cooper M (2004) Mapping as you go: an effective approach for marker-assisted selection of complex traits. Crop Sci 44:1560–1571

    Article  Google Scholar 

  • Ripol MI, Churchill GA, da Silva JAG, Sorrells M (1999) Statistical aspects of genetic mapping in autopolyploids. Gene 235:31–41

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute Inc (2008) SAS/STAT_ 9.2 user’s guide. SAS Institute Inc, Cary

    Google Scholar 

  • Schon C, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE (2004) Quantitative trait locus mapping based on re-sampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh RK, Srivastava S, Singh SP, Sharma ML, Mohopatra T, Singh NK, Singh SB (2008) Identification of new microsatellite DNA markers for sugar and related traits in sugarcane. Sugar Tech 10:327–333

    Article  CAS  Google Scholar 

  • Singh RK, Singh SP, Tiwari DK, Srivastava S, Singh SB, Sharma ML, Singh R, Mohopatra T, Singh NK (2013) Genetic mapping and QTL analysis for sugar yield-related traits in sugarcane. Euphytica 191:333–353

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. W.H. Freeman and Co, New York

    Google Scholar 

  • Suman A, Pan Y-B, Thongthawee S, Burner DM, Kimbeng C (2011) Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85-384’. I. Linkage mapping using AFLP, SSR, and TRAP markers. Theor Appl Genet 123:77–93

    Article  Google Scholar 

  • Van Ooijen JW (2006) JoinMap®4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B. V., Wageningen

    Google Scholar 

  • Yang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

AFLP and TRAP marker data were kindly provided by Collins Kimbeng and Suman Andru. This research was partially funded by grower/processor check-off funds administrated by the American Sugar Cane League of the USA., Inc., Thibodaux, Louisiana, USA. Greenhouse and field technical supports were provided by Jennifer Chiasson, Elta Duet, Brian Duet, Cory Landry, Lionel Lomax, Jeri Maggio, Norris Matherne, Eric Petrie, Clinton Randall, Randy Richard, David Verdun, and Kathy Warnke. SSR-PCR and ABI3730XL-based fragment analysis were conducted by Sheron Simpson at the USDA-ARS, MSA Genomics Laboratory directed by Brian Scheffler. Amaresh Chandra gratefully acknowledges Department of Biotechnology, Government of India for DBT-CREST Fellowship Award.

Authors’ contributions

YBP conceived, designed and directed the study. PL, YQ and YBP collected SSR marker data. PL analyzed the molecular and phenotypic data, constructed the genetic and QTL map, and drafted the manuscript. AC performed phenotypic data analysis, interpreted the data, and participated in manuscript preparation. PHC, MPG, CDD, TLT, WHW, and YBP conducted field trials and collected phenotypic data. PL, AC, YQ, MPG, and YBP participated in manuscript preparation. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Bao Pan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Disclaimer

Product names and trademarks are mentioned to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA does not imply the approval of the product to the exclusion of others that may also be suitable. The experiments reported comply with the current laws of USA.

Additional information

Pingwu Liu and Amaresh Chandra have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Chandra, A., Que, Y. et al. Identification of quantitative trait loci controlling sucrose content based on an enriched genetic linkage map of sugarcane (Saccharum spp. hybrids) cultivar ‘LCP 85-384’. Euphytica 207, 527–549 (2016). https://doi.org/10.1007/s10681-015-1538-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1538-5

Keywords

Navigation