, Volume 207, Issue 2, pp 273–292 | Cite as

Variability of tocopherols, tocotrienols and avenanthramides contents in European oat germplasm

  • Rita Redaelli
  • Lena Dimberg
  • Christoph U. Germeier
  • Nicola Berardo
  • Sabrina Locatelli
  • Lorenzo Guerrini


A broad spectrum of European oat genetic resources representing crop wild relatives, landraces, traditional, obsolete and modern cultivars, was observed in a multi-location field study all over Europe. Here analyses results of 173 accessions for tocopherols and tocotrienols, and of 137 accessions for avenanthramides from groat samples are reported. Genotype, environment and interaction effects, as observed on a set of standard cultivars, were highly significant for most of the targeted traits. Environment effects were often dominant. Higher contents of these compounds than previously reported in oat have been frequently found. High values of α-tocotrienol and avenanthramides were detected in grains of Avena strigosa. Also few cultivars of A. s ativa reached more than 100 mg kg−1 α-tocotrienol. Contents of ß, γ- and δ-tocols were low; the latter often close to the detection limits. Presence of avenanthramides in Avena species other than A. s ativa is shown for the first time.


Avena ssp. Avenanthramides Environmental effects Genetic resources Tocols 



The authors wish to thank the partners involved in the multiplication, de-hulling and milling of the selected accessions and in the determination of the seed weight: Külli Annamaa, Jõgeva Plant Breeding Institute, Estonia; Izabela Kordulasinska and Zofia Bulinska, IHAR, Radzików, Poland; Nadezhda Antonova, Institute of Plant Genetic Resources “K. Malkov”, Sadovo, Bulgaria; Alf Ceplitis, Svalöf Weibull AB, Svalöv, Sweden; Jean Koenig and Gérard Branlard, INRA, Clermont-Ferrand, France; Danela Murariu, Vegetal Genetic Resources Bank of Suceava, Romania; Matthias H. Herrmann, Julius Kühn Institute, Groβ Lüsewitz, Germany. Janicka Nilsson is acknowledged for performing the avenanthramide analyses. Further they thank the two referees, who carefully went through the text and made valuable suggestions for clarification and improvement. This research was part of the European Project “Avena genetic resources for quality in human consumption”, co-funded by the European Commission (AGRI GENRES 061, council regulation 870/2004) with additional contributions by Peter Koelln KGaA, Elmshorn, Germany, Emco spol. s r. o., Prague, Czech Republic and Gemeinschaft zur Förderung der privaten deutschen Pflanzenzüchtung e.V., Bonn, Germany.


  1. Bratt K, Sunnerheim K, Bryngelsson S, Fagerlund A, Engman L, Andersson RE, Dimberg LH (2003) Avenanthramides in oats (Avena sativa L.) and structure-antioxidant activity relationships. J Agric Food Chem 51:594–600CrossRefPubMedGoogle Scholar
  2. Bryngelsson S, Mannerstedt-Fogelfors B, Kamal-Eldin A, Andersson R, Dimberg LH (2002) Lipids and antioxidants in groats and hulls of Swedish oats (Avena sativa L.). J Sci Food Agric 82:606–614CrossRefGoogle Scholar
  3. Collins FW (2011) Oat phenolics: biochemistry and biological functionality. In: Webster FH, Wood PJ (eds). Oats: chemistry and technology, 2nd edn. AACC International Inc., Minnesota, pp 157–217CrossRefGoogle Scholar
  4. DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Ann Rev Plant Biol 57:711–738CrossRefGoogle Scholar
  5. Dimberg LH, Gissén C, Nilsson J (2005) Phenolic compounds in oat grains grown in conventional and organically systems. Ambio 20:331–337CrossRefGoogle Scholar
  6. Dimberg LH, Jastrebova J (2009) Quantitative analysis of oat avenanthramides. In: Shewry PR, Ward JL (eds) HEALTHGRAIN methods: analysis of bioactive components in small grain cereals. AACC International Inc., Minnesota, pp 113–127Google Scholar
  7. Dimberg LH, Peterson DM (2009) Phenols in spikelets and leaves of field-grown oats (Avena sativa) with different inherent resistance to crown rust (Puccinia coronata f. sp. avenae). J Sci Food Agric 89:1815–1824CrossRefGoogle Scholar
  8. Dimberg LH, Theander O, Lingnert H (1993) Avenanthramides—a group of phenolic compounds in oats. Cereal Chem 70:637–641Google Scholar
  9. EFSA Panel on Dietetic Products, Nutrition and Allergies (2010) Scientific opinion on the substantiation of a health claim related to oat beta glucan and lowering blood cholesterol and reduced risk of (coronary) heart disease pursuant to article 14 of regulation (EC) No. 1924/2006. EFSA J 8(12):15Google Scholar
  10. Fagerlund A, Sunnerheim K, Dimberg LH (2009) Radical-scavenging and antioxidant activity of avenanthramides. Food Chem 113:550–556CrossRefGoogle Scholar
  11. Federer WT (1961) Augmented designs with one-way elimination of heterogeneity. Biometrics 17:447–473CrossRefGoogle Scholar
  12. Federer WT, Raghavarao D (1975) On augmented designs. Biometrics 31:29–35CrossRefGoogle Scholar
  13. Guo W, Kong E, Meydani M (2009) Dietary polyphenols, inflammation, and cancer. Nutr Cancer 61:807–810CrossRefPubMedGoogle Scholar
  14. Irakli MN, Samanidou VF, Papadoyannis IN (2012) Optimization and validation of the reversed-phase high-performance liquid chromatography with fluorescence detection method for the separation of tocopherol and tocotrienol isomers in cereals, employing a novel sorbent material. J Agric Food Chem 60:2076–2082CrossRefPubMedGoogle Scholar
  15. Katsiotis A, Germeier CU, Koenig J, Legget M, Bondo L, Frese L, Bladenopoulos K, Ottoson F, Mavromatis A, Veteläinen M, Menexes G, Drossou A (2009) Screening a European Avena landrace collection using morphological and molecular markers for quality and resistance breeding. In: Molina-Cano JL, Christou P, Graner A, Hammer K, Jouve N, Keller B, Lasa JM, Powell W, Royo C, Shewry P, Stanca AM (eds) Cereal science and technology for feeding ten billion people: genomics era and beyond. Zaragoza: CIHEAM/IRTA (Options Méditerranéennes: Série A. Séminaires Méditerranéens, 81), pp 27–30Google Scholar
  16. Liu L, Zubik L, Collins FW, Marko M, Meydani M (2004) The antiatherogenic potential of oat phenolic compounds. Atherosclerosis 175:39–49CrossRefPubMedGoogle Scholar
  17. Loskutov IG (1998) Database and taxonomy of VIR’s world collection of the genus Avena L. In: Maggioni L, Leggett M, Bücken S, Lipman E (compilers): Report of a Working Group on Avena: Fifth Meeting, Vilnius, Lithuania, International Plant Genetic Resources Institute, Rome, pp 26–32Google Scholar
  18. Loskutov IG, Rines H (2011) Avena. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals. Springer, Berlin, pp 109–183CrossRefGoogle Scholar
  19. Meydani M (2009) Potential health benefits of avenanthramides of oats. Nutr Rev 67:731–735CrossRefPubMedGoogle Scholar
  20. Molteberg EL, Solheim R, Dimberg LH, Frolich W (1996) Variation in oat groats due to variety, storage and heat treatment. II: sensory quality. J Cereal Sci 24:273–282CrossRefGoogle Scholar
  21. Murariu D, Placinta DD, Germeier CU, Annamaa K, Antonomova N, Bulinska-Radomska Z, Koenig J, Terzi V (2013) Quality characteristics of European Avena genetic resources collections. Rom Agric Res 30:45–50Google Scholar
  22. Peterson DM (2001) Oat antioxidants. J Cereal Sci 33:115–129CrossRefGoogle Scholar
  23. Peterson DM, Qureshi AA (1993) Genotype and environment effects on tocols of barley and oats. Cereal Chem 70:157–162CrossRefGoogle Scholar
  24. Peterson DM, Wesenberg DM, Burrup DE, Erickson CA (2005) Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Sci 45:1249–1255CrossRefGoogle Scholar
  25. Piepho HP (1998) Methods for comparing the yield stability of cropping systems. J Agron Crop Sci 180:193–213 CrossRefGoogle Scholar
  26. Piepho HP (2012) A SAS macro for generating letter displays of pairwise mean comparisons. Commun Biometry Crop Sci 7:4–13Google Scholar
  27. Piepho HP, Büchse A, Emrich K (2003) A hitchhiker’s giude to mixed models for randomized experiments. J Agron Crop Sci 189:310–322CrossRefGoogle Scholar
  28. Pisacane V, Redaelli R, Berardo N (2004) Reducing time analysis for the determination of tocols in cereals by Normal-Phase High Performance Liquid Chromatography. J Genet Breed 58:253–258Google Scholar
  29. Redaelli R, Del Frate V, Bellato S, Terracciano G, Ciccoritti R, Germeier CU, De Stefanis E, Sgrulletta D (2013) Genetic and environmental variability of total and soluble β-glucan in European oat genotypes. J Cereal Sci 57:193–199CrossRefGoogle Scholar
  30. Regand A, Tosh SM, Wolver TMS, Wood PJ (2009) Physiochemical properties of beta-glucan in different processed oat foods influence glycemic response. J Agric Food Chem 57:831–8838CrossRefGoogle Scholar
  31. Scott RA, Milliken GA (1993) A SAS program for analyzing augmented randomized block designs. Crop Sci 33:865–867CrossRefGoogle Scholar
  32. Sen CK, Khanna S, Roy S (2006) Tocotrienols: vitamin E beyond tocopherols. Life Sci 78:2088–2098PubMedCentralCrossRefPubMedGoogle Scholar
  33. Shewry PR, Piironen V, Lampi A-M, Nyström L, Li L, Rakszegi M, Fraś A, Boros D, Gebruers K, Courtin CM, Delcour JA, Andersson AAM, Dimberg LH, Bedő Z, Ward JL (2008) Phytochemical and fiber components in oat varieties in the HEALTHGRAIN diversity screen. J Agric Food Chem 56:9777–9784CrossRefPubMedGoogle Scholar
  34. Sur R, Nigam A, Grote D, Liebel F, Southall MD (2008) Avenanthramides, polyphenols from oats, exhibit anti-inflammatory and anti-itch activity. Arch Derm Res 300:569–574CrossRefPubMedGoogle Scholar
  35. The Food and Drug Administration (1997) Food labeling: health claims, oats and coronary heart disease. Final rule. Federal Register 62:3583–3601Google Scholar
  36. Tiwari U, Cummins E (2009) Nutritional importance and effect of processing on tocols in cereals. Trends Food Sci Technol. 20:511–520CrossRefGoogle Scholar
  37. Uchihashi K, Nakayashiki H, Okamura K, Ishihara A, Tosa Y, Park P, Mayama S (2011) In situ localization of avenanthramide A and its biosynthetic enzyme in oat leaves infected with the crown rust fungus, Puccinia coronata f. sp. Avenae. Physiol Mol Plant Pathol 76:173–181CrossRefGoogle Scholar
  38. Ward J, Poutanen K, Gebruers K, Piironen V, Lampi A-M, Nyström L, Andersson AAM, Åman P, Boros D, Rakszegi M, Bedo Z, Shewry PR (2008) The HEALTHGRAIN cereal diversity screen: concept, results and prospects. J Agric Food Chem 56:9699–9709CrossRefPubMedGoogle Scholar
  39. Welch RW, Brown JCW, Leggett JM (2000) Interspecific and intraspecific variation in grain and groat characteristics of wild oat (Avena) species: very high groat (1–3), (1–4)-ß-d-glucan in an Avena atlantica genotype. J Cereal Sci 31:273–279CrossRefGoogle Scholar
  40. Wolfinger RD, Federer WT, Cordero-Brana O (1997) Recovering information in augmented designs, using SAS PROC GLM and PROC MIXED. Agron J 89:856–859CrossRefGoogle Scholar
  41. Yang J, Ou B, Wise ML, Chu Y (2014) In vitro total antioxidant capacity and anti-inflammatory activity of three common oat-derived avenanthramides. Food Chem 160:338–345CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Rita Redaelli
    • 1
  • Lena Dimberg
    • 2
  • Christoph U. Germeier
    • 3
  • Nicola Berardo
    • 1
  • Sabrina Locatelli
    • 1
  • Lorenzo Guerrini
    • 4
  1. 1.Maize Research UnitCouncil for Agricultural Research and EconomicsBergamoItaly
  2. 2.Department of Food ScienceSwedish University of Agricultural Sciences (SLU)UppsalaSweden
  3. 3.Institute for Breeding Research on Agricultural CropsJulius Kühn Institute - Federal Research Centre for Cultivated PlantsQuedlinburgGermany
  4. 4.University of Firenze, GESAAFFlorenceItaly

Personalised recommendations