Skip to main content
Log in

Variability of tocopherols, tocotrienols and avenanthramides contents in European oat germplasm

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A broad spectrum of European oat genetic resources representing crop wild relatives, landraces, traditional, obsolete and modern cultivars, was observed in a multi-location field study all over Europe. Here analyses results of 173 accessions for tocopherols and tocotrienols, and of 137 accessions for avenanthramides from groat samples are reported. Genotype, environment and interaction effects, as observed on a set of standard cultivars, were highly significant for most of the targeted traits. Environment effects were often dominant. Higher contents of these compounds than previously reported in oat have been frequently found. High values of α-tocotrienol and avenanthramides were detected in grains of Avena strigosa. Also few cultivars of A. s ativa reached more than 100 mg kg−1 α-tocotrienol. Contents of ß, γ- and δ-tocols were low; the latter often close to the detection limits. Presence of avenanthramides in Avena species other than A. s ativa is shown for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bratt K, Sunnerheim K, Bryngelsson S, Fagerlund A, Engman L, Andersson RE, Dimberg LH (2003) Avenanthramides in oats (Avena sativa L.) and structure-antioxidant activity relationships. J Agric Food Chem 51:594–600

    Article  CAS  Google Scholar 

  • Bryngelsson S, Mannerstedt-Fogelfors B, Kamal-Eldin A, Andersson R, Dimberg LH (2002) Lipids and antioxidants in groats and hulls of Swedish oats (Avena sativa L.). J Sci Food Agric 82:606–614

    Article  CAS  Google Scholar 

  • Collins FW (2011) Oat phenolics: biochemistry and biological functionality. In: Webster FH, Wood PJ (eds). Oats: chemistry and technology, 2nd edn. AACC International Inc., Minnesota, pp 157–217

    Chapter  Google Scholar 

  • DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Ann Rev Plant Biol 57:711–738

    Article  CAS  Google Scholar 

  • Dimberg LH, Gissén C, Nilsson J (2005) Phenolic compounds in oat grains grown in conventional and organically systems. Ambio 20:331–337

    Article  Google Scholar 

  • Dimberg LH, Jastrebova J (2009) Quantitative analysis of oat avenanthramides. In: Shewry PR, Ward JL (eds) HEALTHGRAIN methods: analysis of bioactive components in small grain cereals. AACC International Inc., Minnesota, pp 113–127

    Chapter  Google Scholar 

  • Dimberg LH, Peterson DM (2009) Phenols in spikelets and leaves of field-grown oats (Avena sativa) with different inherent resistance to crown rust (Puccinia coronata f. sp. avenae). J Sci Food Agric 89:1815–1824

    Article  CAS  Google Scholar 

  • Dimberg LH, Theander O, Lingnert H (1993) Avenanthramides—a group of phenolic compounds in oats. Cereal Chem 70:637–641

    CAS  Google Scholar 

  • EFSA Panel on Dietetic Products, Nutrition and Allergies (2010) Scientific opinion on the substantiation of a health claim related to oat beta glucan and lowering blood cholesterol and reduced risk of (coronary) heart disease pursuant to article 14 of regulation (EC) No. 1924/2006. EFSA J 8(12):15

  • Fagerlund A, Sunnerheim K, Dimberg LH (2009) Radical-scavenging and antioxidant activity of avenanthramides. Food Chem 113:550–556

    Article  CAS  Google Scholar 

  • Federer WT (1961) Augmented designs with one-way elimination of heterogeneity. Biometrics 17:447–473

    Article  Google Scholar 

  • Federer WT, Raghavarao D (1975) On augmented designs. Biometrics 31:29–35

    Article  Google Scholar 

  • Guo W, Kong E, Meydani M (2009) Dietary polyphenols, inflammation, and cancer. Nutr Cancer 61:807–810

    Article  CAS  Google Scholar 

  • Irakli MN, Samanidou VF, Papadoyannis IN (2012) Optimization and validation of the reversed-phase high-performance liquid chromatography with fluorescence detection method for the separation of tocopherol and tocotrienol isomers in cereals, employing a novel sorbent material. J Agric Food Chem 60:2076–2082

    Article  CAS  Google Scholar 

  • Katsiotis A, Germeier CU, Koenig J, Legget M, Bondo L, Frese L, Bladenopoulos K, Ottoson F, Mavromatis A, Veteläinen M, Menexes G, Drossou A (2009) Screening a European Avena landrace collection using morphological and molecular markers for quality and resistance breeding. In: Molina-Cano JL, Christou P, Graner A, Hammer K, Jouve N, Keller B, Lasa JM, Powell W, Royo C, Shewry P, Stanca AM (eds) Cereal science and technology for feeding ten billion people: genomics era and beyond. Zaragoza: CIHEAM/IRTA (Options Méditerranéennes: Série A. Séminaires Méditerranéens, 81), pp 27–30

  • Liu L, Zubik L, Collins FW, Marko M, Meydani M (2004) The antiatherogenic potential of oat phenolic compounds. Atherosclerosis 175:39–49

    Article  CAS  Google Scholar 

  • Loskutov IG (1998) Database and taxonomy of VIR’s world collection of the genus Avena L. In: Maggioni L, Leggett M, Bücken S, Lipman E (compilers): Report of a Working Group on Avena: Fifth Meeting, Vilnius, Lithuania, International Plant Genetic Resources Institute, Rome, pp 26–32

  • Loskutov IG, Rines H (2011) Avena. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals. Springer, Berlin, pp 109–183

    Chapter  Google Scholar 

  • Meydani M (2009) Potential health benefits of avenanthramides of oats. Nutr Rev 67:731–735

    Article  Google Scholar 

  • Molteberg EL, Solheim R, Dimberg LH, Frolich W (1996) Variation in oat groats due to variety, storage and heat treatment. II: sensory quality. J Cereal Sci 24:273–282

    Article  CAS  Google Scholar 

  • Murariu D, Placinta DD, Germeier CU, Annamaa K, Antonomova N, Bulinska-Radomska Z, Koenig J, Terzi V (2013) Quality characteristics of European Avena genetic resources collections. Rom Agric Res 30:45–50

    Google Scholar 

  • Peterson DM (2001) Oat antioxidants. J Cereal Sci 33:115–129

    Article  CAS  Google Scholar 

  • Peterson DM, Qureshi AA (1993) Genotype and environment effects on tocols of barley and oats. Cereal Chem 70:157–162

    Article  CAS  Google Scholar 

  • Peterson DM, Wesenberg DM, Burrup DE, Erickson CA (2005) Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Sci 45:1249–1255

    Article  Google Scholar 

  • Piepho HP (1998) Methods for comparing the yield stability of cropping systems. J Agron Crop Sci 180:193–213

    Article  Google Scholar 

  • Piepho HP (2012) A SAS macro for generating letter displays of pairwise mean comparisons. Commun Biometry Crop Sci 7:4–13

    Google Scholar 

  • Piepho HP, Büchse A, Emrich K (2003) A hitchhiker’s giude to mixed models for randomized experiments. J Agron Crop Sci 189:310–322

    Article  Google Scholar 

  • Pisacane V, Redaelli R, Berardo N (2004) Reducing time analysis for the determination of tocols in cereals by Normal-Phase High Performance Liquid Chromatography. J Genet Breed 58:253–258

    Google Scholar 

  • Redaelli R, Del Frate V, Bellato S, Terracciano G, Ciccoritti R, Germeier CU, De Stefanis E, Sgrulletta D (2013) Genetic and environmental variability of total and soluble β-glucan in European oat genotypes. J Cereal Sci 57:193–199

    Article  CAS  Google Scholar 

  • Regand A, Tosh SM, Wolver TMS, Wood PJ (2009) Physiochemical properties of beta-glucan in different processed oat foods influence glycemic response. J Agric Food Chem 57:831–8838

    Article  Google Scholar 

  • Scott RA, Milliken GA (1993) A SAS program for analyzing augmented randomized block designs. Crop Sci 33:865–867

    Article  Google Scholar 

  • Sen CK, Khanna S, Roy S (2006) Tocotrienols: vitamin E beyond tocopherols. Life Sci 78:2088–2098

    Article  CAS  Google Scholar 

  • Shewry PR, Piironen V, Lampi A-M, Nyström L, Li L, Rakszegi M, Fraś A, Boros D, Gebruers K, Courtin CM, Delcour JA, Andersson AAM, Dimberg LH, Bedő Z, Ward JL (2008) Phytochemical and fiber components in oat varieties in the HEALTHGRAIN diversity screen. J Agric Food Chem 56:9777–9784

    Article  CAS  Google Scholar 

  • Sur R, Nigam A, Grote D, Liebel F, Southall MD (2008) Avenanthramides, polyphenols from oats, exhibit anti-inflammatory and anti-itch activity. Arch Derm Res 300:569–574

    Article  CAS  Google Scholar 

  • The Food and Drug Administration (1997) Food labeling: health claims, oats and coronary heart disease. Final rule. Federal Register 62:3583–3601

    Google Scholar 

  • Tiwari U, Cummins E (2009) Nutritional importance and effect of processing on tocols in cereals. Trends Food Sci Technol. 20:511–520

    Article  CAS  Google Scholar 

  • Uchihashi K, Nakayashiki H, Okamura K, Ishihara A, Tosa Y, Park P, Mayama S (2011) In situ localization of avenanthramide A and its biosynthetic enzyme in oat leaves infected with the crown rust fungus, Puccinia coronata f. sp. Avenae. Physiol Mol Plant Pathol 76:173–181

    Article  CAS  Google Scholar 

  • Ward J, Poutanen K, Gebruers K, Piironen V, Lampi A-M, Nyström L, Andersson AAM, Åman P, Boros D, Rakszegi M, Bedo Z, Shewry PR (2008) The HEALTHGRAIN cereal diversity screen: concept, results and prospects. J Agric Food Chem 56:9699–9709

    Article  CAS  Google Scholar 

  • Welch RW, Brown JCW, Leggett JM (2000) Interspecific and intraspecific variation in grain and groat characteristics of wild oat (Avena) species: very high groat (1–3), (1–4)-ß-d-glucan in an Avena atlantica genotype. J Cereal Sci 31:273–279

    Article  CAS  Google Scholar 

  • Wolfinger RD, Federer WT, Cordero-Brana O (1997) Recovering information in augmented designs, using SAS PROC GLM and PROC MIXED. Agron J 89:856–859

    Article  Google Scholar 

  • Yang J, Ou B, Wise ML, Chu Y (2014) In vitro total antioxidant capacity and anti-inflammatory activity of three common oat-derived avenanthramides. Food Chem 160:338–345

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the partners involved in the multiplication, de-hulling and milling of the selected accessions and in the determination of the seed weight: Külli Annamaa, Jõgeva Plant Breeding Institute, Estonia; Izabela Kordulasinska and Zofia Bulinska, IHAR, Radzików, Poland; Nadezhda Antonova, Institute of Plant Genetic Resources “K. Malkov”, Sadovo, Bulgaria; Alf Ceplitis, Svalöf Weibull AB, Svalöv, Sweden; Jean Koenig and Gérard Branlard, INRA, Clermont-Ferrand, France; Danela Murariu, Vegetal Genetic Resources Bank of Suceava, Romania; Matthias H. Herrmann, Julius Kühn Institute, Groβ Lüsewitz, Germany. Janicka Nilsson is acknowledged for performing the avenanthramide analyses. Further they thank the two referees, who carefully went through the text and made valuable suggestions for clarification and improvement. This research was part of the European Project “Avena genetic resources for quality in human consumption”, co-funded by the European Commission (AGRI GENRES 061, council regulation 870/2004) with additional contributions by Peter Koelln KGaA, Elmshorn, Germany, Emco spol. s r. o., Prague, Czech Republic and Gemeinschaft zur Förderung der privaten deutschen Pflanzenzüchtung e.V., Bonn, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Redaelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redaelli, R., Dimberg, L., Germeier, C.U. et al. Variability of tocopherols, tocotrienols and avenanthramides contents in European oat germplasm. Euphytica 207, 273–292 (2016). https://doi.org/10.1007/s10681-015-1535-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1535-8

Keywords

Navigation