, Volume 205, Issue 2, pp 569–584 | Cite as

Comprehensive evaluation and screening for chilling-tolerance in tomato lines at the seedling stage

  • Xue Cao
  • Fangling Jiang
  • Xu Wang
  • Yuwen Zang
  • Zhen Wu


Tomato is one important vegetable but with low chilling tolerance. Though research on tomato chilling tolerance has been reported, the evaluation method has not identified. In the present study, seedlings of 48 tomato lines were treated with chilling stress (4/4 °C, day/night) for 8 days, and the chilling injury index (CII) was then determined. Four physiological indexes including electrolyte leakage, total chlorophyll (Chl) content, the chlorophyll fluorescence parameters Fv/Fm and ΦPSII were measured in leaves of tomato seedlings before and after the treatment. It was found that CII, and the electrolyte leakage increased, while the total Chl content, Fv/Fm, and ΦPSII decreased in response to chilling stress. Based on the chilling tolerance coefficients (CTCs) of four physiological indexes, the comprehensive evaluation value (D) of each tomato line was calculated by principal component analysis (PCA), and subordinate function analysis. The D value had significant correlation with CIIs and CTCs of the physiological indexes, which suggested that D value could accurately predict the chilling tolerance of tomato lines. Based on the D values, 48 tomato lines could be divided into four groups by cluster analysis: chilling-tolerant (15 lines), medium chilling-tolerant (21 lines), low chilling-tolerant (seven lines), and chilling-sensitive (five lines). Meanwhile, linear equation was constructed. Therefore, this work provides a comprehensive and accurate method for evaluating chilling tolerance in tomato.


Tomato Chilling tolerance Principal component analysis Subordinate function analysis Cluster analysis Comprehensive evaluation 



This work was supported by Grants from the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Research Innovation Program for College Graduates of Jiangsu Province (CXZZ12-0285).

Supplementary material

10681_2015_1433_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)


  1. Allen DJ, Ort DR (2001) Impact of chilling temperatures on photosynthesis in warm climate plants. Trends Plant Sci 6:36–42. doi: 10.1016/S1360-1385(00)01808-2 PubMedCrossRefGoogle Scholar
  2. Bajji M, Bertin P, Lutts S, Kinet JM (2004) Evaluation of drought resistance-related traits in durum wheat somaclonal lines selected in vitro. Aust J Exp Agric 44:27–35. doi: 10.1071/Ea02199 CrossRefGoogle Scholar
  3. Bolharnordenkampe HR, Long SP, Baker NR, Oquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field—a review of current instrumentation. Funct Ecol 3:497–514. doi: 10.2307/2389624 CrossRefGoogle Scholar
  4. Bonnecarrere V, Borsani O, Diaz P, Capdevielle F, Blanco P, Monza J (2011) Response to photoxidative stress induced by cold in japonica rice is genotype dependent. Plant Sci 180:726–732. doi: 10.1016/j.plantsci.2011.01.023 PubMedCrossRefGoogle Scholar
  5. Campos PS, Quartin V, Ramalho JC, Nunes MA (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J Plant Physiol 160:283–292. doi: 10.1078/0176-1617-00833 PubMedCrossRefGoogle Scholar
  6. Choluj D, Kalaji HM, Niemyska B (1997) Analysis of the gas exchange components in chilled tomato plants. Photosynthetica 34:583–589. doi: 10.1023/A:1006825915953 CrossRefGoogle Scholar
  7. Ciardi JA, Varina CS, Orzolek MD (1998) Evaluation of tomato transplant production methods for improving establishment rates. HortScience 33:229–232Google Scholar
  8. Clement JMAM, vanHasselt PR (1996) Chlorophyll fluorescence as a parameter for frost hardiness in winter wheat. Phyton-Ann Rei Bot A 36:29–41Google Scholar
  9. Dmytro K, Barry AL, Randy DA, Holaday AS (2003) Effect of chloroplastic overproduction of ascorbate peroxidase on photosynthesis and photoprotection in cotton leaves subjected to low temperature photoinhibition. Plant Sci 165:1033–1041. doi: 10.1016/S0168-9452(03)00294-2 CrossRefGoogle Scholar
  10. Dolstra O, Haalstra SR, Van der Putten PEL, Schapendonk AHCM (1994) Genetic variation for resistance to low temperature photoinhibition of photosynthesis in maize. Euphytica 80:85–93. doi: 10.1007/BF00039302 CrossRefGoogle Scholar
  11. Duan M, Ma NN, Li D, Deng YS, Kong FY, Lv W, Meng QW (2012) Antisense-mediated suppression of tomato thylakoidal ascorbate peroxidase influences anti-oxidant network during chilling stress. Plant Physiol Biochem 58:37–45. doi: 10.1016/j.plaphy.2012.06.007 PubMedCrossRefGoogle Scholar
  12. Foolad MR, Lin GY, Chen FQ (1999) Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed 118:167–173. doi: 10.1046/j.1439-0523.1999.118002167.x CrossRefGoogle Scholar
  13. Ghassemi-Golezani K, Khomari S, Valizadeh M, Alyari H (2008) Changes in chlorophyll content and fluorescence of leaves of winter rapeseed affected by seedling vigor and cold acclimation duration. J Food Agric Environ 6:196–199Google Scholar
  14. Glaszmann JC, Kaw RN, Khush GS (1990) Genetic divergence among cold tolerant rices (Oryza satva L.). Euphytica 45(2):95–104Google Scholar
  15. Hu WH, Yu JQ (2001) Effects of chilling under low light on photosynthesis and chlorophyll fluorescence characteristic in tomato leaves. Acta Hortic Sin 28:41–46. doi: 10.3321/j.issn:0513-353X.2001.01.008 Google Scholar
  16. Hu WH, Zhou YH, Du YS, Xia XJ, Yu JQ (2006) Differential response of photosynthesis in greenhouse- and field-ecotypes of tomato to long-term chilling under low light. J Plant Physiol 163:1238–1246. doi: 10.1016/j.jplph.2005.10.006 PubMedCrossRefGoogle Scholar
  17. Islam S, Izekor E, Garner JO (2011) Effect of chilling stress on the chlorophyll fluorescence, peroxidase activity and other physiological activities in Ipomoea batatas L. genotypes. Am J Plant Physiol 6:72–82. doi: 10.3923/ajpp.2011.72.82 CrossRefGoogle Scholar
  18. Jolliffe L (2005) Principal component analysis. Encycl Stat Behav Sci. doi: 10.1002/0470013192.bsa501 Google Scholar
  19. Kalaji HM, Govindjee Bosa K, Koscielniak J, Zuk-Golaszewska K (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64–72. doi: 10.1016/j.envexpbot.2010.10.009 CrossRefGoogle Scholar
  20. Korkmaz A, Dufault RJ (2001) Developmental consequences of cold temperature stress at transplanting on seedling and field growth aad yield. I. Watermelon. J Am Soc Hortic Sci 126:404–409Google Scholar
  21. Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis - the basics. Annu Rev Plant Phys 42:313–349. doi: 10.1146/annurev.pp.42.060191.001525 CrossRefGoogle Scholar
  22. Kürklü A, Hadley P, Wheldon A (1998) Effects of temperature and time of harvest on the growth and yield of aubergine (Solanum melongena L.). Turk J Agric For 22:341–348Google Scholar
  23. Li ZG, Yuan LX, Wang QL, Ding ZL, Dong CY (2013) Combined action of antioxidant defense system and osmolytes in chilling shock-induced chilling tolerance in Jatropha curcas seedlings. Acta Physiol Plant 35:2127–2136. doi: 10.1007/s11738-013-1249-2 CrossRefGoogle Scholar
  24. Liu H, Bo OY, Zhang JH, Wang TT, Li HX, Zhang YY, Yu CY, Ye ZB (2012a) Differential modulation of photosynthesis, signaling, and transcriptional regulation between yolerant and sensitive tomato genotypes under cold stress. PLoS ONE 7(11):1–16. doi: 10.1371/journal.pone.0050785 Google Scholar
  25. Liu YF, Qi MF, Li TL (2012b) Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery. Plant Sci 196:8–17. doi: 10.1016/j.plantsci.2012.07.005 PubMedCrossRefGoogle Scholar
  26. Maximov NA (1912) Chemical schutzmittel der pflanzen gegen Erfrieren I. Ber Deuts Bot Ges 30:52–65Google Scholar
  27. Miao YM, Ning Y, Cao YJ, Shen J, Pang X, Cui L, Cheng CY, Chen JF (2013) Evaluation of cucumber’s chilling tolerance at germination and seedling stages. Chin J Appl Ecol 24:1914–1922Google Scholar
  28. Mohammad S (2012) Improving chilling resistance of cucumber seedlings by salicylic acid. Am-Euras J Agric Environ Sci 12:204–209Google Scholar
  29. Murray MB, Cape JN, Fowler D (1989) Quantification of frost damage in plant-tissues by rates of electrolyte leakage. New Phytol 113:307–311. doi: 10.1111/j.1469-8137.1989.tb02408.x CrossRefGoogle Scholar
  30. Oyanedel E, Wolfe DW, Owens TG, Monforte AJ, Tanksley SD (2000) Quantitative trait loci analysis of photoinhibition under chilling stress in tomato. ISHS Acta Hortic 521:227–232Google Scholar
  31. Rahman HU, Hadley P, Pearson S, Khan MJ (2013) Response of cauliflower (Brassica oleracea L. var. botrytis) growth and development after curd initiation to different day and night temperatures. Pak J Bot 45:411–420Google Scholar
  32. Rose R, Haase D (2002) Chlorophyll fluorescence and variations in tissue cold hardiness in response to freezing stress in Douglas-fir seedlings. New For 23:81–96. doi: 10.1023/A:1015682317974 CrossRefGoogle Scholar
  33. Somersalo S, Krause GH (1990) Reversible photoinhibition of unhardened and cold-acclimated spinach leaves at chilling temperatures. Planta 180:181–187PubMedCrossRefGoogle Scholar
  34. Strauss AJ, Kruger GHJ, Strasser RJ, Van Heerden PDR (2006) Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. Environ Exp Bot 56:147–157. doi: 10.1016/j.envexpbot.2005.01.011 CrossRefGoogle Scholar
  35. Sung DY, Kaplan F, Lee KJ, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8:179–187. doi: 10.1016/S1360-1385(03)00047-5 PubMedCrossRefGoogle Scholar
  36. Suzuki K, Nagasuga K, Okada M (2008) The chilling injury induced by high root temperature in the leaves of rice seedlings. Plant Cell Physiol 49:433–442. doi: 10.1093/Pcp/Pcn020 PubMedCrossRefGoogle Scholar
  37. Tatsumi Y, Murata T (1981) Relation between chilling sensitity of cucurbitaceae fruit and the membrance permeability. Soc Hortic Sci 50:108–113CrossRefGoogle Scholar
  38. Tian J, Wang LP, Yang YJ, Sun J, Guo SR (2012) Exogenous Spermidine Alleviates the Oxidative Damage in Cucumber Seedlings Subjected to High Temperatures. J Am Soc Hortic Sci 137:11–19CrossRefGoogle Scholar
  39. Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1–14. doi: 10.1016/j.molcel.2007.03.016 PubMedCrossRefGoogle Scholar
  40. Wang XX, Li SD, Dong HR, Gao ZH, Dai SS (1996) Effect of low temperature stress on several properties of tomato during seedling and florescence. Acta Hortic Sin 23:349–354Google Scholar
  41. Wang SG, Wang ZL, Wang P, Wang HW, Li F, Huang W, Wu YG, Yin YP (2011) Evaluation of wheat freezing resistance based on the responses of the physiological indices to low temperature stress. Acta Ecol Sin 31:1064–1072Google Scholar
  42. Wang X, Fang G, Li Y, Ding M, Gong HY, Li YS (2013) Differential antioxidant responses to cold stress in cell suspension cultures of two subspecies of rice. Plant Cell Tissue Organ 113:353–361. doi: 10.1007/s11240-012-0273-z CrossRefGoogle Scholar
  43. Wu J, Lightner J, Waewick N, Browse J (1997) Low-temperature damage and subsequent recovery of fab1 mutant Arabidopsis exposed to 28 °C. Plant Physiol 113(2):347–356. doi: 10.1104/pp.113.2.347 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Wu H, Hou LL, Zhou YF, Fan ZC, Shi JY, Aliyan R, Zhang JS (2012) Analysis and evaluation indicator selection of chilling tolerance of different cotton genotypes. Agric Sci Technol 13:2338–2346. doi: 10.3864/j.issn.0578-1752.2012.09.005 Google Scholar
  45. Xiao LT, Wang SG (2005) Experimental techniques of plant physiology. China Agricultural Press, BeijingGoogle Scholar
  46. Xu W, Rosenow DT, Nguyen HT (2000) Stay green trait in grain sorghum: relationship between visual rating and leaf chlorophyll concentration. Plant Breed 119(4):365–367. doi: 10.1046/j.1439-0523.2000.00506.x CrossRefGoogle Scholar
  47. Ying J, Lee EA, Tollenaar M (2000) Response of maize leaf photosynthesis to low temperature during the grain-filling period. Field Crop Res 68(2):87–96. doi: 10.1016/S0378-4290(00)00107-6 CrossRefGoogle Scholar
  48. Yu JQ, Zhou YH, Huang LF (2002) Effects of stimulated acid precipitation on photosynthesis, chlorophyll fluorescence, and antioxidative enzymes in Cucumis sativus L. Photosynthetica 40(3):331–335. doi: 10.1023/A:1022658504882 CrossRefGoogle Scholar
  49. Zhou GS, Mei FZ, Zhou ZQ, Zhu XT (2003) Comprehensive evaluation and forecast on physiological indices of waterlogging resistance of different wheat varieties. Sci Agric Sin 36(11):1378–1382Google Scholar
  50. Zhou J, Wang J, Shi K, Xia XJ, Zhou YH, Yu JQ (2012) Hydrogen peroxide is involved in the cold acclimation-induced chilling tolerance of tomato plants. Plant Physiol Biochem 60:141–149. doi: 10.1016/j.plaphy.2012.07.010 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Xue Cao
    • 1
  • Fangling Jiang
    • 1
  • Xu Wang
    • 1
  • Yuwen Zang
    • 1
  • Zhen Wu
    • 1
  1. 1.Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in East China, Ministry of Agriculture, College of HorticultureNanjing Agricultural UniversityNanjingChina

Personalised recommendations