, Volume 205, Issue 2, pp 421–440 | Cite as

Genetic analysis for canopy architecture in an F2:3 population derived from two-type foundation parents across multi-environments

  • Xianbin Hou
  • Yinghong Liu
  • Qianlin Xiao
  • Bin Wei
  • Xiangge Zhang
  • Yong Gu
  • Yongbin Wang
  • Jiang Chen
  • Yufeng Hu
  • Hanmei Liu
  • Junjie Zhang
  • Yubi Huang


Canopy architecture improvements are a major focus in modern maize (Zea mays L.) breeding because appropriate canopy architecture could allow for the adaptation to high-density planting and high utilisation efficiency of solar energy. Therefore, understanding the genetic basis of canopy architecture-related traits is important for maize breeding. In this study, an F2:3 population derived from a cross between R08 (representing a breeding pattern of lower planting density with large ears breeding pattern) × Ye478 (representing a breeding pattern of high planting density) was evaluated for nine canopy architecture-related traits in six environments, including Nanning, Ya’an, and Jinghong, in 2012 and 2013. Mixed linear model-based composite interval mapping was used to dissect the genetic basis of canopy architecture-related traits. Sixty-five quantitative trait loci (QTL) were identified for all nine traits through a joint analysis across all environments. More than 80 % of the QTL in this study did not show significant QTL × environment interactions, but epistasis played an important role in architecture-related trait inheritance. Nine chromosome segments were identified that affected multiple canopy architecture-related traits.


Canopy architecture Foundation parents QTL mapping 



This work was supported by Grants from the Ministry of Science and Technology of China (2011CB100106). We thank Dr. Richard G. F. Visser and two anonymous reviewers for valuable suggestions and careful corrections. We also thank the help of Drs. Z. H. Zhang, K. Zhou and C. Xia for revision.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10681_2015_1401_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1103 kb)


  1. Almeida GD, Makumbi D, Magorokosho C, Nair S, Borém A, Ribaut JM, Bänziger M, Prasanna BM, Crossa J, Babu R (2013) QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor Appl Genet 126(3):583–600PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48(5):1649–1664CrossRefGoogle Scholar
  3. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li H, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu J, Zhang Z, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718PubMedCrossRefGoogle Scholar
  4. Chen DH, Ronald PC (1999) A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Report 17:53–57CrossRefGoogle Scholar
  5. Chen FB, Yang KC, Rong TZ, Pan GT (2007) Studies on major characters of maize hybrids in the regional tests of Sichuan and southwest China and the countermeasures for maize breeding. J Maize Sci 15(4):41–45Google Scholar
  6. Chen J, Xu L, Cai Y, Xu J (2009) Identification of QTLs for phosphorus utilization efficiency in maize (Zea mays L.) across P levels. Euphytica 167(2):245–252CrossRefGoogle Scholar
  7. Ci XK, Xu JS, Lu ZY, Bai PF, Ru GL, Liang XL, Zhang DG, Li XH, Bai L, Xie CX, Hao ZF, Zhang SH, Dong ST (2012) Trends of grain yield and plant traits in Chinese maize cultivars from the 1950s to the 2000s. Euphytica 185(3):395–406CrossRefGoogle Scholar
  8. Doebley J (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59PubMedCrossRefGoogle Scholar
  9. Duvick DN (1997) What is yield? In developing drought- and low n-tolerant maize. CIMMYT, Mexico, pp 332–335Google Scholar
  10. Duvick DN (2004) Long-term selection in a commercial hybrid maize breeding program. In: Janick J (ed) Plant breeding reviews 24, Part 2. Wiley, Hoboken, pp 109–151Google Scholar
  11. Duvick DN (2005) The contribution of breeding to yield advances in maize. Adv Agron 86:83–145CrossRefGoogle Scholar
  12. Fan JB, Gunderson KL, Bibikova M, Yeakley JM, Chen J, Wickham-Garcia E, Lebruska LL, Laurent M, Shen R, Barker D (2006) Illumina universal bead arrays. Methods Enzymol 410:57–73PubMedCrossRefGoogle Scholar
  13. Foulkes MJ, Reynolds MP, Sylvester-Bradley R (2009) Genetic improvement of grain crops: yield potential. In: Sadras V, Calderini D (eds) Crop physiology: applications for genetic improvement and agronomy. Elsevier, Amsterdam, pp 355–385CrossRefGoogle Scholar
  14. Frascaroli E, Canè MA, Landi P, Pea G, Gianfranceschi L, Villa M, Morgante M, Pè ME (2007) Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics 176(1):625–644PubMedCentralPubMedCrossRefGoogle Scholar
  15. Garcia AAF, Wang S, Melchinger AE, Zeng ZB (2008) Quantitative trait loci mapping and the genetic basis of heterosis in maize and rice. Genetics 180(3):1707–1724PubMedCentralPubMedCrossRefGoogle Scholar
  16. Guo TT, Yang N, Tong H, Pan QC, Yang XH, Tang JH, Wang JK, Li JS, Yan JB (2014) Genetic basis of grain yield heterosis in an “immortalized F2” maize population. Theor Appl Genet 127(10):2149–2158PubMedCrossRefGoogle Scholar
  17. Hallauer AR, Carena MJ (2009) Maize breeding. In: Carena MJ (ed) Cereals. Springer, New York, pp 3–98CrossRefGoogle Scholar
  18. Hallauer AR, Carena MJ, Filho JBM (2010) Means and variances. In: Bradshaw JE (ed) Quantitative genetics in maize breeding. Springer Science Business Media, New York, pp 33–68CrossRefGoogle Scholar
  19. Hammer GL, Dong Z, McLean G, Doherty A, Messina C, Schussler J, Zinselmeier C, Paszkiewicz S, Cooper M (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop Sci 49(1):299–312CrossRefGoogle Scholar
  20. Hunter RB (1980) Increased leaf area (source) and yield of maize in short-season areas. Crop Sci 20(5):571–574CrossRefGoogle Scholar
  21. Jiao YP, Zhao HN, Ren LH, Song WB, Zeng B, Guo JJ, Wang BB, Liu ZP, Chen J, Li W, Zhang M, Xie SJ, Lai JS (2012) Genome-wide genetic changes during modern breeding of maize. Nat Genet 44:812–815PubMedCrossRefGoogle Scholar
  22. Khavkin E, Coe EH (1997) Mapped genomic locations for developmental functions and QTLs reflect concerted groups in maize (Zea mays L.). Theor Appl Genet 95(3):343–352CrossRefGoogle Scholar
  23. Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194CrossRefGoogle Scholar
  24. Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  25. Ku LX, Zhao WM, Zhang J, Wu LC, Wang CL, Wang PA, Zhang WQ, Chen YH (2010) Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor Appl Genet 121(5):951–959PubMedCrossRefGoogle Scholar
  26. Ku LX, Sun ZH, Wang CL, Zhang J, Zhao RF, Liu HY, Tai GQ, Chen YH (2012) QTL mapping and epistasis analysis of brace root traits in maize. Mol Breed 30(2):697–708CrossRefGoogle Scholar
  27. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Etoh T (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  28. Li Y, Wang TY (2010) Germplasm base of maize breeding in China and formation of foundation parents. J Maize Sci 18(5):1–8Google Scholar
  29. Li YL, Niu SZ, Dong YB, Cui DQ, Wang YZ, Liu YY, Wei MG (2007) Identification of trait-improving quantitative trait loci for grain yield components from a dent corn inbred line in an advanced backcross BC2F2 population and comparison with its F2: 3 population in popcorn. Theor Appl Genet 115(1):129–140PubMedCrossRefGoogle Scholar
  30. Lima MDA, de Souza CL, Bento DAV, de Souza AP, Carlini-Garcia LA (2006) Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breed 17:227–239CrossRefGoogle Scholar
  31. Liu TD, Song FB (2012) Maize photosynthesis and microclimate within the canopies at grain-filling stage in response to narrow-wide row planting patterns. Photosynthetica 50(2):215–222CrossRefGoogle Scholar
  32. Liu XH, Tan ZB, Rong TZ (2009) Molecular mapping of a major QTL conferring resistance to SCMV based on immortal RIL population in maize. Euphytica 167(2):229–235CrossRefGoogle Scholar
  33. Liu Y, Wang LW, Sun CL, Zhang ZX, Zheng YL, Qiu FZ (2014a) Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor Appl Genet 127:1019–1037PubMedCrossRefGoogle Scholar
  34. Liu Z, Yu TT, Mei XP, Chen XN, Wang GQ, Wang JG, Liu CX, Wang X, Cai YL (2014b) QTL mapping for leaf angle and leaf space above ear position in maize(Zea mays L.). J Agric Biotech 22(2):177–187Google Scholar
  35. Ma DL, Xie RZ, Niu XK, Li SK, Long HL, Liu YE (2014) Changes in the morphological traits of maize genotypes in China between the 1950s and 2000s. Eur J Agron 58:1–10CrossRefGoogle Scholar
  36. Maddonni GA, Otegui ME (1996) Leaf area, light interception, and crop development in maize. Field Crop Res 48(1):81–87CrossRefGoogle Scholar
  37. Maddonni GA, Otegui ME, Cirilo AG (2001) Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crop Res 71(3):183–193CrossRefGoogle Scholar
  38. Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149(1):383–403PubMedCentralPubMedGoogle Scholar
  39. Mickelson SM, Stuber CS, Senior L, Kaeppler SM (2002) Quantitative trait loci controlling leaf and tassel traits in a B73 × Mo17 population of maize. Crop Sci 42(6):1902–1909CrossRefGoogle Scholar
  40. Mock JJ, Pearce RB (1975) An ideotype of maize. Euphytica 24:613–623CrossRefGoogle Scholar
  41. Papst C, Bohn M, Utz HF, Melchinger AE, Klein D, Eder J (2004) QTL mapping for European corn borer resistance (Ostrinia nubilalis Hb.), agronomic and forage quality traits of testcross progenies in early-maturing European maize (Zea mays L.) germplasm. Theor Appl Genet 108(8):1545–1554PubMedCrossRefGoogle Scholar
  42. Peng B, Li YX, Wang Y, Liu C, Liu ZZ, Tan WW, Zhang Y, Wang D, Shi YS, Sun BC, Song YC, Wang TY, Li Y (2011) QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet 122:1305–1320PubMedCrossRefGoogle Scholar
  43. Pepper GE, Pearce RB, Mock JJ (1977) Leaf orientation and yield of maize. Crop Sci 17:883–886CrossRefGoogle Scholar
  44. Phillips PC (2008) Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867PubMedCentralPubMedCrossRefGoogle Scholar
  45. Qiao SB, Wang YH, Yang KC, Rong TZ, Pan GT, Gao SB (2009) Effects contributed by different donor parents and backcross times on R08 improvement. Acta Agron 35(12):2187–2196CrossRefGoogle Scholar
  46. Qin H, Cai Y, Liu Z, Wang G, Wang J, Guo Y, Wang H (2012) Identification of QTL for zinc and iron concentration in maize kernel and cob. Euphytica 187(3):345–358CrossRefGoogle Scholar
  47. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43(1):223–225CrossRefGoogle Scholar
  48. Rossini MA, Maddonni GA, Otegui ME (2011) Inter-plant competition for resources in maize crops grown under contrasting nitrogen supply and density: variability in plant and ear growth. Field Crop Res 121(3):373–380CrossRefGoogle Scholar
  49. Russell WA (1985) Evaluations for plant, ear, and grain traits of maize cdtivars representing seven eras of breeding. Maydica 30:85–96Google Scholar
  50. Russell WA (1991) Genetic improvement of maize yields. Adv Agron 46:245–298CrossRefGoogle Scholar
  51. Sangoi L, Gracietti MA, Rampazzo C, Bianchetti P (2002) Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crop Res 79(1):39–51CrossRefGoogle Scholar
  52. Springer NM, Stupar RM (2007) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17(3):264–275PubMedCrossRefGoogle Scholar
  53. Steduto P, Hsiao TC (1998) Maize canopies under two soil water regimes: II. Seasonal trends of evapotranspiration, carbon dioxide assimilation and canopy conductance, and as related to leaf area index. Agric Forest Meteorol 89(3):185–200CrossRefGoogle Scholar
  54. Steinhoff J, Liu W, Reif JC, Della Porta G, Ranc N, Würschum T (2012) Detection of QTL for flowering time in multiple families of elite maize. Theor Appl Genet 125(7):1539–1551PubMedCrossRefGoogle Scholar
  55. Stewart DW, Costa C, Dwyer LM, Smith DL, Hamilton RI, Ma BL (2003) Canopy structure, light interception, and photosynthesis in maize. Agron J 95(6):1465–1474CrossRefGoogle Scholar
  56. Stich B, Yu J, Melchinger AE, Piepho HP, Utz HF, Maurer HP, Buckler ES (2007) Power to detect higher-order epistatic interactions in a metabolic pathway using a new mapping strategy. Genetics 176(1):563–570PubMedCentralPubMedCrossRefGoogle Scholar
  57. Stöckle CO, Kemanian AR (2009) Crop radiation capture and use efficiency: a framework for crop growth analysis. In: Calderini DF, Sadras VO (eds) Crop physiology: applications for genetic improvement and agronomy. Elsevier, Amsterdam, pp 145–170CrossRefGoogle Scholar
  58. Stuber CW, Edwards MD, Wendel JF (1987) Molecular marker-facilitated investigations of in maize. II. Factors influencing yield and its component traits. Crop Sci 27:639–648CrossRefGoogle Scholar
  59. Su SW, Gao HM, Gou XL (1990) A study on the yield potential in maize hybrids with different leaf angles. Acta Agron Sin 16(4):364–372Google Scholar
  60. Tang H, Yan JB, Huang YQ, Zheng YL, Li JS (2005) QTL mapping of five agronomic traits in maize. Acta Genet Sin 32:203–209PubMedGoogle Scholar
  61. Tanksley SD (1993) Mapping polygenes. Ann Rev Genet 27:205–233PubMedCrossRefGoogle Scholar
  62. Tetio-Kagho F, Gardner FP (1988) Responses of maize to plant population density. I. Canopy development, light relationships, and vegetative growth. Agron J 80(6):930–935CrossRefGoogle Scholar
  63. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43(2):159–162PubMedCrossRefGoogle Scholar
  64. Tollenaar M (1989) Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. Crop Sci 29:1365–1371CrossRefGoogle Scholar
  65. Tollenaar M (1991) Physiological basis of genetic improvement of maize hybrids in Ontario from 1959 to 1988. Crop Sci 31:119–124CrossRefGoogle Scholar
  66. Troyer AF (1996) Breeding widely adapted, popular maize hybrids. Euphytica 92(1–2):163–174CrossRefGoogle Scholar
  67. Tuberosa R, Sanguineti MC, Landi P, Salvi S, Casarini E, Conti S (1998) RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stressed maize (Zea mays L.). Theor Appl Genet 97(5–6):744–755CrossRefGoogle Scholar
  68. Veldboom LR, Lee M, Woodman WL (1994) Molecular marker-facilitated studies in an elite maize population: I. Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet 88(1):7–16PubMedCrossRefGoogle Scholar
  69. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78Google Scholar
  70. Wang QC, Niu YZ, Xu QZ, Wang ZX, Zhang J (1996) Effect of plant-type on rate of canopy apparent photosynthesis and yield in maize (Zea mays L.). Acta Agron Sin 22(2):223–227Google Scholar
  71. Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264CrossRefGoogle Scholar
  72. Welcker C, Boussuge B, Bencivenni C, Ribaut JM, Tardieu F (2007) Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit. J Exp Bot 58(2):339–349PubMedCrossRefGoogle Scholar
  73. Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308(5726):1310–1314PubMedCrossRefGoogle Scholar
  74. Würschum T (2012) Mapping QTl for agronomic traits in breeding populations. Theor Appl Genet 125:201–210PubMedCrossRefGoogle Scholar
  75. Xu YB (2010) Molecular plant breeding. CAB International, CambridgeCrossRefGoogle Scholar
  76. Xu QW, Wang QC, Niu YZ, Wang ZX, Zhang J (1995) Studies on relationship between plant type and canopy photosynthesis in maize. Acta Agronomica Sin 21(4):492–496Google Scholar
  77. Yamasaki M, Tenaillon MI, Bi IV, Schroeder SG, Sanchez-Villeda H, Doebley JF, Gaut BS, McMullen MD (2005) A Large-Scale Screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17:2859–2872PubMedCentralPubMedCrossRefGoogle Scholar
  78. Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536PubMedCrossRefGoogle Scholar
  79. Yang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723PubMedCrossRefGoogle Scholar
  80. Yang N, Lu YL, Yang XH, Huang J, Zhou Y, Ali F, Wen WW, Liu J, Li JS, Yan J (2014) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged Maize Association Panel. PLoS Genet 10(9):e1004573PubMedCentralPubMedCrossRefGoogle Scholar
  81. Yu YT, Zhang JM, Shi YS, Song YC, Wang TY, Li Y (2006) QTL analysis for plant height and leaf angle by using different populations of maize. J Maize Sci 14(2):88–92Google Scholar
  82. Yuan LP (2001) Breeding of super hybrid rice. In: Peng S, Hardy B (eds) Rice research for food security and poverty alleviation. International Rice Research Institute, Los Banos, pp 143–149Google Scholar
  83. Zhang SH, Bonjean APA (2010) Maize breeding and production in China. In: He ZH, Bonjean APA (eds) Cereals in China. CIMMYT, El Batan, pp 35–49Google Scholar
  84. Zhang J, Ku LX, Zhang WQ, Yang S, Liu HY, Zhao RF, Chen YH (2010) QTL mapping of internodes length above upmost ear in maize. J Maize Sci 18(4):45–48Google Scholar
  85. Zhang HW, Ma P, Zhao ZN, Zhao GW, Tian BH, Wang JH, Wang GY (2012) Mapping QTL controlling maize deep-seeding tolerance-related traits and confirmation of a major QTL for mesocotyl length. Theor Appl Genet 124(1):223–232PubMedCrossRefGoogle Scholar
  86. Zhu LY (2012) QTL Mapping for plant type, ear traits and genetic analysis of a male sterile line in maize (Zea mays L.). Doctoral dissertation, Hebei Agricultural UniversityGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Xianbin Hou
    • 1
  • Yinghong Liu
    • 2
  • Qianlin Xiao
    • 1
  • Bin Wei
    • 1
  • Xiangge Zhang
    • 1
  • Yong Gu
    • 1
  • Yongbin Wang
    • 1
  • Jiang Chen
    • 1
  • Yufeng Hu
    • 1
  • Hanmei Liu
    • 3
  • Junjie Zhang
    • 3
  • Yubi Huang
    • 1
  1. 1.College of AgronomySichuan Agricultural UniversityChengduChina
  2. 2.Maize Research InstituteSichuan Agricultural UniversityChengduChina
  3. 3.College of Life ScienceSichuan Agricultural UniversitiyYa’anChina

Personalised recommendations