, Volume 202, Issue 2, pp 307–316 | Cite as

Genotype-specific changes associated to early synthesis of autotetraploids in wild potato species

  • Riccardo Aversano
  • Maria-Teresa Scarano
  • Giovanna Aronne
  • Immacolata Caruso
  • Vincenzo D’Amelia
  • Veronica De Micco
  • Carlo Fasano
  • Pasquale Termolino
  • Domenico Carputo


Polyploidy is an important factor in plant evolution that may trigger drastic genome reorganization and phenotypic differentiation. In the last decade, extensive studies have been carried to understand the consequences of allopolyploidization, where the effects of ploidy change may be confounded by interspecific hybridization. By contrast, less is known on autopolyploidization, which only involves doubling of homologous chromosomes. This study was undertaken to assess leaf anatomical modifications and gene expression changes occurring after doubling the somatic chromosome complement of diploid (2n = 2x = 24) potato species Solanum commersonii Dunal and S. bulbocastanum Dunal. Polyploidization did not induce qualitative changes in leaf structure and, for several leaf traits, anatomic modifications were stochastic. In addition, in both species a diploid superiority was generally observed, suggesting the occurrence of a high-ploidy syndrome. Expression change study was carried out on eight important cell cycle-regulatory genes in plant. It revealed a strong alteration of the expression patterns in the 4x genotypes with respect to the 2x parents. Changes often exceed the twofold, with no consistent trend towards up- or down regulation when comparing 2x vis-à-vis 4x. We discuss the possible relevance of epigenetic changes in controlling the expression of duplicated genes.


Chromosome doubling Morpho-anatomical traits Solanum commersonii Solanum bulbocastanum Cell cycle-regulatory genes 



This research was carried out in the frame of the PRIN project “Effects of the ploidy level on gene expression and genome structure in alfalfa and potato” funded by MiUR.

Supplementary material

10681_2014_1338_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)
10681_2014_1338_MOESM2_ESM.docx (15 kb)
Supplementary material 2 (DOCX 15 kb)


  1. Aasama K, Sober A, Rahi M (2001) Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Aust J Plant Physiol 28:765–774Google Scholar
  2. Albertin W, Brabant P, Catrice O, Eber F, Jenczewski E, Chèvre AM, Thiellement H (2005) Autopolyploidy in cabbage (Brassica oleracea L.) does not alter significantly the proteomes of green tissues. Proteomics 5:2131–2139CrossRefPubMedGoogle Scholar
  3. Albertin W, Balliau T, Brabant P, Chèvre AM, Eber F, Malosse C, Thiellement H (2006) Numerous and rapid nonstochastic modifications of gene products in newly synthesized Brassica napus allotetraploids. Genetics 173:1101–1113CrossRefPubMedCentralPubMedGoogle Scholar
  4. Allario T, Brumos J, Colmenero-Flores JM, Tadeo F, Froelicher Y, Talon M, Navarro L, Ollitrault P, Morillon R (2011) Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. J Exp Bot 62:2507–2519CrossRefPubMedGoogle Scholar
  5. Anssour S, Krügel T, Sharbel TF, Saluz HP, Bonaventure G, Baldwin IT (2009) Phenotypic, genetic and genomic consequences of natural and synthetic polyploidization of Nicotiana attenuata and Nicotiana obtusifolia. Ann Bot 103:1207–1217CrossRefPubMedCentralPubMedGoogle Scholar
  6. Aversano R, Caruso I, Aronne A, De Micco V, Scognamiglio N, Carputo D (2013) Stochastic changes affect Solanum wild species following autopolyploidization. J Exp Bot 64:625–635CrossRefPubMedCentralPubMedGoogle Scholar
  7. Blomme J, Inzé D, Gonzalez N (2013) The cell-cycle interactome: a source of growth regulators? J Exp Bot 65:2715–2730CrossRefPubMedGoogle Scholar
  8. Boudolf V, Barroco R, Engler JD, Verkest A, Beeckman T, Naudts M, Inze D, De Veylder L (2004) B1-type cyclin-dependent kinases are essential for the formation of stomatal complexes in Arabidopsis thaliana. Plant Cell 16:945–955CrossRefPubMedCentralPubMedGoogle Scholar
  9. Caruso I, Lepore L, De Tommasi N, Dal Piaz F, Aversano R, Garramone R, Carputo D (2011) Secondary metabolite profile in induced tetraploids of wild Solanum commersonii Dun. Chem Biodivers 8:2226–2237CrossRefPubMedGoogle Scholar
  10. Chae WB, Hong SJ, Gifford JM, Rayburn AL, Widholm JM, Juvik JA (2013) Synthetic polyploid production of Miscanthus sacchariflorus, Miscanthus sinensis, and Miscanthus x giganteus. GCB Bioenergy 5:338–350CrossRefGoogle Scholar
  11. Cohen H, fait A, Tel-Zur N (2013) Morphological, cytological and metabolic consequences of autopolyploidization in Hylocereus (Cactaceae) species. BMC Plant Biol 13:173CrossRefPubMedCentralPubMedGoogle Scholar
  12. Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846CrossRefPubMedGoogle Scholar
  13. De Micco V, Aronne G, Joseleau JP, Ruel K (2008) Xylem development and cell wall changes of soybean seedlings grown in space. Ann Bot 101:661–669CrossRefPubMedCentralPubMedGoogle Scholar
  14. De Micco V, Arena C, Vitale L, G Aronne, De Santo AV (2011) Anatomy and photochemical behaviour of Mediterranean Cistus incanus winter leaves under natural outdoor and warmer indoor conditions. Botany 89:677–688CrossRefGoogle Scholar
  15. Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Amer J Bot 55:123–142CrossRefGoogle Scholar
  16. Guo M, Davis D, Birchler JA (1996) Dosage effects on gene expression in a maize ploidy series. Genetics 142:1349–1355PubMedCentralPubMedGoogle Scholar
  17. Hessen DO, Jeyasingh PD, Neiman M, Weider LJ (2010) Genome streamlining and the elemental costs of growth. Trends Ecol Evol 25:75–80CrossRefPubMedGoogle Scholar
  18. Jensen WA (1962) Botanical histochemistry: principle and practice. Freeman WH & Company, San FranciscoGoogle Scholar
  19. Kozuka T, Konga SG, Doib M, Shimazakib K, Nagatania A (2011) Tissue-autonomous promotion of palisade cell development by Phototropin 2 in Arabidopsis. Plant Cell 23:3684–3695CrossRefPubMedCentralPubMedGoogle Scholar
  20. Lavania UC, Srivastava S, Lavania S, Basu S, Misra NK, Mukai Y (2012) Autopolyploidy differential influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased methylation. Plant J 71:539–549CrossRefPubMedGoogle Scholar
  21. Levy AA, Feldman M (2004) Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Proc Linn Soc 82:607–613CrossRefGoogle Scholar
  22. Li X, Yu E, Fan C, Zhang C, Fu T, Zhou Y (2012) Developmental, cytological and transcriptional analysis of autotetraploid Arabidopsis. Planta 236:579–596CrossRefPubMedGoogle Scholar
  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  24. Madlung A, Masuelli RW, Watson B, Reynolds SH, Davison J, Comai L (2002) Remodelling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol 129:733–746CrossRefPubMedCentralPubMedGoogle Scholar
  25. Martelotto LG, Ortiz JPA, Espinoza F, Quarin CL, Pessino SC (2005) A comprehensive analysis of gene expression alteration in newly synthesized Paspalum notatum autotetraploid. Plant Sci 169:211–220CrossRefGoogle Scholar
  26. Nakadozono Y, Bamba T, Chen R, Namimatsu S, Nakazama Y, Gyokusen K (2007) Induction and analysis of polyploid in Eucommia ulmoides Oliver. Int Symp E. ulmoides 1:112–115CrossRefGoogle Scholar
  27. Ozkan H, Levy HH, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747CrossRefPubMedCentralPubMedGoogle Scholar
  28. Parisod C, Holderegger R, Brochmann C (2010a) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17CrossRefPubMedGoogle Scholar
  29. Parisod C, Alix K, Just J, Petit M, Sarilar M, Mhiri C, Ainouche M, Chalhoub B, Grandbastien MA (2010b) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186:37–45CrossRefPubMedGoogle Scholar
  30. Pignatta D, Dilkes BP, Yoo SY, Henry IM, Madlung A, Doerge RW, Jeffrey Chen Z, Comai L (2010) Differential sensitivity of the Arabidopsis thaliana transcriptome and enhancers to the effects of genome doubling. New Phytol 186:194–206CrossRefPubMedGoogle Scholar
  31. Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195CrossRefGoogle Scholar
  32. Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639CrossRefGoogle Scholar
  33. Riddle NC, Kato A, Birchler JA (2006) Genetic variation for the response to ploidy change in Zea mays L. Theor Appl Genet 114:101–111CrossRefPubMedGoogle Scholar
  34. Scarano MT, Abbate L, Ferrante S, Lucretti S, Tusa N (2002) ISSR-PCR technique: a useful method for characterizing new allotetraploid somatic hybrids of mandarin. Plant Cell Rep 20:1162–1166CrossRefGoogle Scholar
  35. Shcherban AB, Badaeva AV, Amosova AV, Adonina IG, Salina EA (2008) Genetic and epigenetic changes of rDNA in a synthetic allotetraploid, Aegilops sharonensis x Ae. Umbellulata. Genome 51:261–271CrossRefPubMedGoogle Scholar
  36. Stupar RM, Bhaskar PB, Yandell BS et al (2007) Phenotypic and transcriptomic changes associated with potato autopolyploidization. Genetics 176:2055–2067CrossRefPubMedCentralPubMedGoogle Scholar
  37. Sugiyama SI (2005) Polyploidy and cellular mechanisms changing leaf size: comparison of diploid and autotetraploid populations in two species of Lolium. Ann Bot 96:931–938CrossRefPubMedCentralPubMedGoogle Scholar
  38. Tayalé A, Parisod C (2013) Natural pathways to polyploidy in plants and consequences for genome reorganization. Cytogenet Genome Res 140:79–96CrossRefPubMedGoogle Scholar
  39. Udall YA, Wendel JF (2006) Polyploidy and crop improvement. Crop Sci 46:S3–S14CrossRefGoogle Scholar
  40. Van Buggenhout S, Grauwet T, Van Loey A, Hendrickx M (2008) Structure/processing relation of vacuum infused strawberry tissue frozen under different conditions. Eur Food Res Technol 226:437–448CrossRefGoogle Scholar
  41. Vyas P, Bisht MS, Miyazawa SI, Yano S, Noguchi K, Terashima I, Funayama-Noguchi S (2007) Effects of polyploidy on photosynthetic properties and anatomy in leaves of Phlox drummondii. Funct Plant Biol 34:673–682CrossRefGoogle Scholar
  42. Yang X, Ye CY, Cheng ZM, Tschaplinski TJ, Wullschleger SD, Yin W, Xia X, Tuskan GAA (2011) Genomic aspects of research involving polyploid plants. Plant Cell Tiss Org 3:387–397CrossRefGoogle Scholar
  43. Yao H, Kato A, Mooney B, Birchler JA (2011) Phenotypic and gene expression analyses of a ploidy series of maize inbred Oh43. Plant Mol Biol 75:237–251CrossRefPubMedGoogle Scholar
  44. Yu Z, Haberer G, Matthes M, Rattei T, Mayer KFX, Gierl A, Torres-Ruiz RA (2010) Impact of natural genetic variation on the transcriptome of autotetraploid Arabidopsis thaliana. Proc Natl Acad Sci USA 107:17809–17814CrossRefPubMedCentralPubMedGoogle Scholar
  45. Zhang X, Deng M, Fan G (2014) Differential transcriptome analysis between Paulownia fortunei and its synthesized autopolyploid. Int J Mol Sci 15:5079–5093CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Riccardo Aversano
    • 1
  • Maria-Teresa Scarano
    • 2
  • Giovanna Aronne
    • 1
  • Immacolata Caruso
    • 1
  • Vincenzo D’Amelia
    • 1
  • Veronica De Micco
    • 1
  • Carlo Fasano
    • 1
  • Pasquale Termolino
    • 2
  • Domenico Carputo
    • 1
  1. 1.Department of Agricultural SciencesUniversity of Naples Federico IIPorticiItaly
  2. 2.CNR, Institute of Biosciences and BioResources (IBBR), UOS PorticiPorticiItaly

Personalised recommendations