, Volume 204, Issue 1, pp 81–90 | Cite as

Quantitative trait loci underlying the adhesion of Azospirillum brasilense cells to wheat roots

  • José Luis Díaz De León
  • Thelma Castellanos
  • Jie Ling
  • Adriana Rojas-Hernández
  • Marion S. Röder


The capacity to adhere Azospirillum brasilense cells on the seedling root is a variable trait in wheat varieties (Triticum aestivum L.). The parents of a CIMMYT bread wheat mapping population derived from the cross cv. Opata × synthetic hexaploid line WSHD67.2 (257) contrasted for this trait, providing an opportunity to determine its genetic basis. The capacity to adhere effectively was shown by 32 % of the mapping population individuals. A genetic map was constructed using 157 informative microsatellite loci and 1,356 SNP loci. The resulting quantitative trait loci (QTL) analysis identified four chromosomes as harboring loci associated with adhesion. Chromosome 1A was the site of both a major (LOD >3) and a minor (LOD 2–3) QTL, while the remaining four minor loci mapped to chromosomes 2D, 5A and 6B (two loci). QAdh.uabcs-1A.2 explained 8.6 % of the phenotypic variance and the full set of QTL explained 23.1 %. The source of the positive allele of QAdh.uabcs-1A.2 was cv. Opata. The recognition that adherence has a genetic component has consequences for the use of biofertilizers, and opens the way for breeding for improved levels of A. brasilense adherence.


Triticum aestivum Biofertilizer Azospirillum brasilense Roots Illumina Wheat 9 K iSelect Beadchip 



This research was funded by a grant from CONACYT from the Mexican Government (grant 36608-B) and the bilateral CONACYT-BMBF interchange program. We thank CIMMYT, Texcoco, Mexico, for providing the plant materials and Robert Koebner for language editing.

Supplementary material

10681_2014_1334_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)
10681_2014_1334_MOESM2_ESM.xlsx (108 kb)
Supplementary material 2 (XLSX 108 kb)


  1. Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136Google Scholar
  2. Bashan Y, Levanony H, Whitmoyer RE (1991) Root surface colonization of non-cereal crop plants by pleomorphic Azospirillum brasilense. Can J Gen Microbiol 137:187–196CrossRefGoogle Scholar
  3. Castellanos T, Ascencio F, Bashan Y (1997) Cell-surface hydrophobicity and cell-surface charge of Azospirillum spp. FEMS Microbiol Ecol 24:159–172CrossRefGoogle Scholar
  4. Castellanos T, Ascencio F, Bashan Y (1998) Cell-surface lectins of Azospirillum spp. Curr Microbiol 36:241–244PubMedCrossRefGoogle Scholar
  5. Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, Lopey da Silva M, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrel PL, Dubcovsky J, Morell MK, Sorrels ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062PubMedCentralPubMedCrossRefGoogle Scholar
  6. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  7. Díaz-Zorita M, Fernández-Canigia MV (2009) Field performance of a liquid formulation of Azospirillum brasilense on dryland wheat productivity. Eur J Soil Biol 45:3–11CrossRefGoogle Scholar
  8. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  9. Ganal MW, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement: genomics applications in crops, vol 2. Springer, Dordrecht, pp 1–24CrossRefGoogle Scholar
  10. Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385PubMedCrossRefGoogle Scholar
  11. Hartmann A, Bashan Y (2009) Ecology and application of Azospirillum and other plant growth-promoting bacteria (PGPB). Eur J Soil Biol 45:1–2CrossRefGoogle Scholar
  12. Kalagudi GM (2010) Mapping of paranodulation response QTL in rice. Jawaharlal Nehru Technological University.
  13. Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4.Google Scholar
  14. Michiels KW, Croes CL, Vanderleyden J (1991) Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J Gen Microbiol 137:2241–2246CrossRefGoogle Scholar
  15. Millet E, Avivi Y, Feldman M (1984) Yield response of various wheat genotypes to inoculation with Azospirillum brasilense. Plant Soil 80:261–266CrossRefGoogle Scholar
  16. Mora P, Rosconi F, Franco-Fraguas L, Castro-Sowinski S (2008) Azospirillum brasilense Sp7 produces an outer-membrane lectin that specifically binds to surface-exposed extracellular polysaccharide produced by the bacterium. Arch Microbiol 189:519–524PubMedCrossRefGoogle Scholar
  17. Ng DWK, Wang T, Chandrasekharan MB, Aramayo R, Kertbundit S, Hall TC (2007) Plant SET domain-containing proteins: structure, function and regulation. Biochim et Biophys Acta (BBA)—Gene Struct Expr 1769:316–329CrossRefGoogle Scholar
  18. Nosheen A, Bano A, Ullah F, Farooq U, Yasmin H, Hussain I (2011) Effect of plant growth promoting rhizobacteria on root morphology of safflower (Carthamus tinctorius L.). Afr J Biotechnol 10:12639–12649Google Scholar
  19. Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601CrossRefGoogle Scholar
  20. Olivares J, Bedmar EJ, Sanjuán J (2013) Biological nitrogen fixation in the context of global change. Mol Plant-Microbe Interact 26:486–494PubMedCrossRefGoogle Scholar
  21. Pothier JF, Wisniewski-Dyé F, Weiss-Gayet M, Moënne-Loccoz Y, Prigent-Combaret C (2007) Promoter-trap identification of wheat seed extract-induced genes in the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp245. Microbiology 153:3608–3622PubMedCrossRefGoogle Scholar
  22. Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Torres-Gutierrez R, El-Howeity M, Michiels J, Vanderleyden J (2008) Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant Soil 302:149–161CrossRefGoogle Scholar
  23. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedCentralPubMedGoogle Scholar
  24. Rodriguez-Sala VM, Nogueira-Cardoso EJB, de Freitas JG, da Silveira AP-D (2007) Wheat genotypes response to inoculation of diazotrophic bacteria in field conditions. Pesq Agropecu Bras 42:833–842CrossRefGoogle Scholar
  25. Rojas A, Castellanos T, Díaz De León JL (2013) Genetic variation in wheat for Azospirillum brasilense to adhere to the seedling root. Cereal Res Commun 41:275–283CrossRefGoogle Scholar
  26. Salse J, Abrouk M, Bolot S, Guilhot N, Courcelle E, Faraut T, Waugh R, Close TJ, Messing J, Feuillet C (2009) Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution in plants than in animals. Proc Natl Acad Sci USA 106:14908–14913PubMedCentralPubMedCrossRefGoogle Scholar
  27. Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial microorganisms and the effect on cropping practices. Ann Rev Phytopathol 25:339–358CrossRefGoogle Scholar
  28. Selosse MA, Baudoin E, Vandenkoornhuyse P (2004) Symbiotic microorganisms, a key for ecological success and protection of plants. Comptes Rendus Biologie 327:639–648CrossRefGoogle Scholar
  29. Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. Agric Sci 96:4786–4790Google Scholar
  30. Spartz AK, Lee SH, Wenger JP, Gonzalez N, Itoh H, Inzé D, Peer WA, Murphy AS, Overvoorde PJ, Gray WM (2012) The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant J 70:978–990PubMedCentralPubMedCrossRefGoogle Scholar
  31. Tien TM, Gaskins MH, Hubell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L). Appl Environ Microbiol 37:1016–1024PubMedCentralPubMedGoogle Scholar
  32. van Ooijen JW (2006) JoinMap ® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V, WageningenGoogle Scholar
  33. Vega NOW (2007) A review on beneficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake. Rev Fac Nal Agr Medellín 60:3621–3643Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • José Luis Díaz De León
    • 1
  • Thelma Castellanos
    • 2
  • Jie Ling
    • 3
  • Adriana Rojas-Hernández
    • 1
  • Marion S. Röder
    • 3
  1. 1.Departamento de AgronomíaUniversidad Autónoma de Baja California SurLa PazMexico
  2. 2.Centro de Investigaciones Biológicas del Noroeste (CIBNOR)La PazMexico
  3. 3.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations