Skip to main content
Log in

Association of single nucleotide polymorphisms in LpIRI1 gene with freezing tolerance traits in perennial ryegrass

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Perennial ryegrass is an important agricultural crop, however, it is susceptible to winterkill. Freezing injury is caused primarily by ice formation. The LpIRI1 protein has the potential to inhibit ice recrystallization, thus minimize the damage. An association study was conducted using single nucleotide polymorphisms obtained through allele sequencing of the LpIRI1 gene and phenotypic data were collected using two phenotyping platforms in a perennial ryegrass association mapping population of 76 diverse genotypes. Winter survival (FWS) was evaluated under field conditions, while tiller survival (PTS) and electrolyte leakage (EL) at −8 and −12 °C were determined under controlled-environment conditions. Proline content (PC) in cold-acclimated plants was measured prior to the freezing test. Significant variation in FWS, PTS, EL and PC was observed among genotypes in our panel. EL and PTS revealed significant negative correlations at −8 °C (rs = −0.40) and −12 °C (rs = −0.49). PC, however, did not show significant correlations with any of the measured traits, while FWS was correlated (rs = −0.48) with EL at −12 °C. The LpIRI1 gene was found to be highly polymorphic with an average SNP frequency of 1 SNP per 16 bp. Association analysis revealed two non-synonymous SNPs being associated with increased EL, both located in the LpIRI1 leucine-rich repeat. The results indicate that allelic variation in the LpIRI1 gene plays an important role in the cell membrane integrity of perennial ryegrass during freezing, and can be exploited for developing more freezing tolerant cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ábrahám E, Hourton-Cabassa C, Erdei L, Szabados L (2010) Methods for determination of proline in plants. In: Sunkar R (ed) Plant stress tolerance. Humana Press, New York, pp 322–324

    Google Scholar 

  • Alia P, Mohanty P, Matysik J (2001) Effect of proline on the production of singlet oxygen. Amino Acids 21:195–200

    Article  CAS  PubMed  Google Scholar 

  • Alm V, Busso CS, Ergon A, Rudi H, Larsen A, Humphreys MW, Rognli OA (2011) QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.). Theor Appl Genet 123(3):369–382. doi:10.1007/s00122-011-1590-z

    Article  PubMed  Google Scholar 

  • Atici O, Nalbantoglu B (2003) Antifreeze proteins in higher plants. Phytochemistry 64:1187–1196

    Article  CAS  PubMed  Google Scholar 

  • Bajji M, Kinet JM, Lutts S (2001) The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul 00:1–10

    Google Scholar 

  • Bella J, Hindle KL, McEwan PA, Lovell SC (2008) The leucine-rich repeat structure. Cell Mol Life Sci 65:2307–2333

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot. doi:10.1093/aob/mcq258

    Google Scholar 

  • Bocian A, Kosmala A, Rapacz M, Jurczyk B, Marczak Ł, Zwierzykowski Z (2011) Differences in leaf proteome response to cold acclimation between Lolium perenne plants with distinct levels of frost tolerance. J Plant Physiol 168:1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: sotware for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Brazauskas G, Lenk I, Pedersen MG, Studer B, Lübberstedt T (2011) Genetic variation, population structure, and linkage disequilibrium in European elite germplasm of perennial ryegrass. Plant Sci. doi:10.1016/j.plantsci.2011.06.013

    PubMed  Google Scholar 

  • Byrne S, Czaban A, Studer B, Panitz F, Bendixen C, Asp T (2013) Genome wide allele frequency fingerprints (GWAFFs) of populations via genotyping by sequencing. PLoS One. doi:10.1371/journal.pone.0057438

    Google Scholar 

  • Campos PS, Quartin V, Ramalho JC, Nunes MA (2003) Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. Plants J Plant Physiol 160:283–292

    Article  CAS  Google Scholar 

  • Ciannamea S, Busscher-Lange J, de Folter S, Angenent GC, Immink RG (2006) Characterization of the vernalization response in Lolium perenne by a cDNA microarray approach. Plant Cell Physiol 47:481–492

    Article  CAS  PubMed  Google Scholar 

  • Dinari A, Niazi A, Afsharifar AR, Ramezani A (2013) Identification of upregulated genes under cold stress in cold-tolerant chickpea using the cDNA-AFLP approach. PLoS One. doi:10.1371/journal.pone.0052757

    PubMed Central  PubMed  Google Scholar 

  • Ebdon JS, Gagne RA, Manley RC (2002) Comparative cold tolerance in diverse turf quality genotypes of perennial ryegrass. Hortic Sci 37:826–830

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. doi:10.1371/journal.pone.0019379

    PubMed Central  PubMed  Google Scholar 

  • Espevig T, Dacosta M, Hoffman L, Aamlid TS, Tronsmo AM, Clarke BB, Huang B (2011) Freezing tolerance and carbohydrate changes of two Agrostis species during cold acclimation. Crop Sci 51:1188–1197

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Forster JW, Cogan NOI, Dobrowolski MP, Francki MG, Spangenberg GC, Smith KF (2008) Functionally associated molecular genetic markers for temperate pasture plant improvement. In: Henry RJ (ed) Plant genotyping II: SNP technology. CABI Publishing, Cambridge, pp 154–186

    Chapter  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Helft L, Reddy V, Chen X, Koller T, Federici L, Fernández-Recio J, Gupta R, Bent A (2011) LRR conservation mapping to predict functional sites within protein leucine-rich repeat domains. PLoS One. doi:10.1371/journal.pone.0021614

    PubMed Central  PubMed  Google Scholar 

  • Hulke BS, Watkins E, Wyse D, Ehlke N (2007) Winter hardiness and turf quality of accessions of perennial ryegrass (Lolium perenne L.) from public collections. Crop Sci 47:1596–1602

    Article  Google Scholar 

  • Hulke BS, Watkins E, Wyse DL, Ehlke NJ (2008) Freezing tolerance of selected perennial ryegrass (Lolium perenne L.) accessions and its association with field winterhardiness and turf traits. Euphytica 163:131–141

    Article  Google Scholar 

  • Hulke BS, Bushman BS, Watkins E, Ehlke NJ (2012) Association of freezing tolerance to LpCBFIIIb and LpCBFIIIc gene polymorphism in perennial ryegrass accessions. Crop Sci. doi:10.2135/cropsci2011.09.0527

    Google Scholar 

  • John UP, Polotnianka RM, Sivakumaran KA, Chew O, Mackin L, Kuiper MJ, Talbot JP, Nugent GD, Mautord J, Schrauf GE, Spangenberg GC (2009) Ice recrystallization inhibition proteins (IRIPs) and freeze tolerance in the cryophilic Antarctic hair grass Deschampsia antarctica E. Desv. Plant Cell Environ 32:336–348

    Article  CAS  PubMed  Google Scholar 

  • Kaul S, Sharma SS, Mehta IK (2008) Free radical scavenging potential of l-proline: evidence from in vitro assays. Amino Acids 34:315–320

    Article  CAS  PubMed  Google Scholar 

  • Lassner MW, Peterson P, Yoder JI (1989) Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Mol Biol Rep 7:116–128

    Article  CAS  Google Scholar 

  • Lee YP, Babakov A, Boer B, Zuther E, Hincha DK (2012) Comparison of freezing tolerance, compatible solutes and polyamines in geographically diverse collections of Thellungiella sp. and Arabidopsis thaliana accessions. BMC Plant Biol 12(1):131. doi:10.1186/1471-2229-12-131

    Article  PubMed Central  PubMed  Google Scholar 

  • Lissarre M, Ohta M, Sato A, Miura K (2010) Cold-responsive gene regulation during cold acclimation in plants. Plant Signal Behav 5:948–952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer K, Keil M, Naldrett MJ (1999) A leucine-rich repeat protein of carrot that exhibits antifreeze activity. FEBS Lett 447:171–178

    Article  CAS  PubMed  Google Scholar 

  • Middleton AJ, Brown AM, Davies PL, Walker VK (2009) Identification of the ice-binding face of a plant antifreeze protein. FEBS Lett. doi:10.1016/j.febslet.2009.01.035

    PubMed  Google Scholar 

  • Middleton AJ, Marshall CB, Faucher F, Bar-Dolev M, Braslavsky I, Campbell RL, Walker VK, Davies PL (2012) Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site. J Mol Biol. doi:10.1016/j.jmb.2012.01.032

    PubMed  Google Scholar 

  • Muthukumaran J, Manivel P, Kannan M, Jeyakanthan J, Krishna R (2011) Advancement in computational analysis methods of plant antifreeze proteins (AFPs): an application towards classification and gene expression studies of leucine rich repeat (LRR) and ice-recrystallization inhibition domain (IRI) containing AFPs. J Comp Biol 3:65–82

    CAS  Google Scholar 

  • Nekrošas S, Kemešytė V (2007) Breeding of ryegrass and Festulolium in Lithuania. Zemdirbyste–Agric 94(4):29–39

    Google Scholar 

  • Pearce SR (2001) Plant freezing and damage. Ann Bot 87:417–424

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sandve SR, Rudi H, Asp T, Rognli OA (2008) Tracking the evolution of a cold stress associated gene family in cold tolerant grasses. BMC Evol Biol. doi:10.1186/1471-2148-8-245

    PubMed Central  PubMed  Google Scholar 

  • Sandve SR, Kosmala A, Rudi H, Fjellheim S, Rapacz M, Yamada T, Rognli OA (2011) Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates. Plant Sci. doi:10.1016/j.plantsci.2010.07.011

    Google Scholar 

  • Skøt L, Sanderson R, Thomas A, Skøt K, Thorogood D, Latypova G, Asp T, Armstead I (2011) Allelic variation in the perennial ryegrass FLOWERING LOCUS T gene is associated with changes in flowering time across a range of populations. Plant Physiol. doi:10.1104/pp.110.169870

    PubMed Central  PubMed  Google Scholar 

  • Srinivas V, Balasubramanian D (1995) Proline is a protein-compatible hydrotrope. Langmuir 11:2830–2833

    Article  CAS  Google Scholar 

  • Statkevičiūtė G, Aleliūnas A, Kemešytė V, Pašakinskienė I, Brazauskas G (2014) AFLP analysis of genetic diversity in an association mapping panel of Lolium perenne L. In: Sokolović D, Huyghe C, Radović J (eds) Quantitative traits breeding for multifunctional grasslands and turf. Springer, Netherlands

    Google Scholar 

  • Szabados L, Savouré A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thalhammer A, Hincha DK, Zuther E (2014) Measuring freezing tolerance: electrolyte leakage and chlorophyll fluorescence assays. Methods Mol Biol 1166:15–24

    Article  CAS  PubMed  Google Scholar 

  • Tyler BF, Hayes JD, Davies WE (1987) Collection, characterization and utilization of genetic resources of temperate forage grass and clover. IBPGR, Rome, pp 1–65

    Google Scholar 

  • Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana. Effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 109:15–30

    CAS  PubMed Central  PubMed  Google Scholar 

  • Utz HF (1998) PLABSTAT: a computer program for the statistical analysis of plant breeding experiments. University of Hohenheim, Institute of Plant Breeding, Seed Science and Population Genetics, Stuttgart

    Google Scholar 

  • Wang Z, Hopkins A, Mian R (2001) Forage and turf grass biotechnology. CRC Crit Rev Plant Sci 20:573–619

    Article  CAS  Google Scholar 

  • Warren RF, Henk A, Mowery P, Holub E, Innes RW (1998) A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 10:1439–1452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilkins PW (1991) Breeding perennial ryegrass for agriculture. Euphytica 52:201–214

    Article  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Article  Google Scholar 

  • Xing Y, Frei U, Schejbel B, Asp T, Lübberstedt T (2007) Nucleotide diversity and linkage disequilibrium in 11 expressed resistance candidate genes in Lolium perenne. BMC Plant Biol. doi:10.1186/1471-2229-7-43

    PubMed Central  PubMed  Google Scholar 

  • Xiong Y, Fei S, Arora R, Brummer EC, Baker RE, Jung G, Warnke SE (2007) Identification of quantitative trait loci controlling winter hardiness in an annual × perennial ryegrass interspecific hybrid population. Mol Breed. doi:10.1007/s11032-006-9050-1

    Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S (1984) Studies on freezing injury of plant cells. I. Relation between thermotropic properties of isolated plasma membrane vesicles and freezing injury. Plant Physiol 75:38–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu X, Bai G, Liu S, Luo N, Wang Y, Richmond SD, Pijut MP, Jackson AS, Yu J, Jiang Y (2013) Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. J Exp Bot 64:1537–1551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang C, Fei SZ, Warnke S, Li L, Hannapel D (2009) Identification of genes associated with cold acclimation in perennial ryegrass. J Plant Physiol. doi:10.1016/j.jplph.2009.03.001

    Google Scholar 

  • Zhang C, Fei SZ, Arora R, Hannapel DJ (2010) Ice recrystallization inhibition proteins of perennial ryegrass enhance freezing tolerance. Planta 232:155–164

    Article  CAS  PubMed  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Research Council of Lithuania, Grant No. MIP-032/2012 (FUMAG). The authors acknowledge Vidmantas Feiza for his assistance in sequence analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aleliūnas.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleliūnas, A., Jonavičienė, K., Statkevičiūtė, G. et al. Association of single nucleotide polymorphisms in LpIRI1 gene with freezing tolerance traits in perennial ryegrass. Euphytica 204, 523–534 (2015). https://doi.org/10.1007/s10681-014-1330-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1330-y

Keywords

Navigation