, Volume 203, Issue 2, pp 273–283 | Cite as

QTL mapping for salt tolerance based on snp markers at the seedling stage in maize (Zea mays L.)

  • Dezhou Cui
  • Dandan Wu
  • Yamuna Somarathna
  • Chunyan Xu
  • Song Li
  • Peng Li
  • Hua Zhang
  • Huabang Chen
  • Li Zhao


Salinity is a major constraint to the sustainability and expansion of maize cultivation. Plant salt tolerance is a quantitative trait controlled by multiple genes. In the present study, we constructed a high density genetic map based on high quality SNP markers from 161 F2:5 recombinant inbred line populations derived from the cross between two maize inbred lines contrasting in salinity tolerance. QTL analysis was conducted in saline field and the hydroponic culture. For saline field, field germination rate and field salt tolerance ranking were used as salinity tolerance indicators to conduct QTL detection. For hydroponic culture, salt tolerance ranking, shoot fresh weight, shoot dry weight, tissue water content, shoot Na+ concentration, shoot K+ concentration, and shoot K+/Na+ ratio were used. Through unconditional QTL analysis, we detected 20 additive and nine epistatic QTLs, of which 12 and two showed significant QTL by treatment (Q × T) interaction effects, respectively. Moreover, the use of conditional analysis model allowed us to detect nine conditional QTLs. The QTLs were mainly clustered on chromosomes 1, 3 and 5. The five unconditional and three conditional QTLs reported here could individually explain more than 20 % of the phenotypic variation. The QTLs identified here could be helpful to improve salt tolerance in maize by marker-assisted selection and shed new light on understanding the genetic basis of salt tolerance in maize.


Maize Salt QTL mapping Conditional analysis Seedling stage 



Recombinant inbred line


Field germination rate


Field salt tolerance ranking


Salt tolerance ranking


Shoot fresh weight


Shoot dry weight


Tissue water content


Shoot Na+ concentration


Shoot K+ concentration


Shoot K+/Na+ ratio

Q × T

QTL by treatment interaction effects


Marker-assisted selection


Normal treatment


160 mM NaCl treatment



The authors thank the China National Science Foundation (Grant No. 31201214) and the National Sci-Tech Support program (Grant No.2013BAD05B01) for providing funds for carrying out this research work. We are very grateful to Dr. Jiping Zhao, Manager-Developmental Biology, Ball Horticultural Company, United States, for thorough English editing of this manuscript.

Supplementary material

10681_2014_1250_MOESM1_ESM.xlsx (34 kb)
Supplementary material 1 (XLSX 33 kb)
10681_2014_1250_MOESM2_ESM.docx (21 kb)
Supplementary material 2 (DOCX 20 kb)
10681_2014_1250_MOESM3_ESM.docx (17 kb)
Supplementary material 3 (DOCX 16 kb)


  1. Cao G, Zhu J, He C, Gao Y, Yan J, Wu P (2001) Impact of epistasis and QTL × environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet 103:153–160. doi: 10.1007/s001220100536 CrossRefGoogle Scholar
  2. Cui F, Li J, Ding AM, Zhao CH, Wang L, Wang XQ, Li SS, Bao YG, Li XF, Feng DS, Kong LR, Wang HG (2011) Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet 122:1517–1536. doi: 10.1007/s00122-011-1551-6 CrossRefPubMedGoogle Scholar
  3. Cui F, Zhao CH, Li J, Ding AM, Li XF, Bao YG, Li JM, Ji J, Wang HG (2013) Kernel weight per spike: what contributes to it at the individual QTL level? Mol Breed 31:265–278. doi: 10.1007/s11032-012-9786-8 CrossRefGoogle Scholar
  4. DeRose-Wilson L, Gaut BS (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52. doi: 10.1038/Nrg703 CrossRefGoogle Scholar
  5. DeRose-Wilson L, Gaut BS (2011) Mapping salinity tolerance during Arabidopsis thaliana germination and seedling growth. PLoS ONE 6:e22832. doi: 10.1371/journal.pone.0022832 CrossRefPubMedCentralPubMedGoogle Scholar
  6. Fan CC, Yu XQ, Xing YZ, Xu CG, Luo LJ, Zhang QF (2005) The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor Appl Genet 110:1445–1452. doi: 10.1007/s00122-005-1975-y CrossRefPubMedGoogle Scholar
  7. Ganal MW, Durstewitz G, Polley A, Berard A, Buckler ES, Charcosset A, Clarke JD, Graner EM, Hansen M, Joets J, Le Paslier MC, McMullen MD, Montalent P, Rose M, Schon CC, Sun Q, Walter H, Martin OC, Falque M (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS ONE 6:e28334. doi: 10.1371/journal.pone.0028334 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M, Tester M, Wallwork H, McDonald GK (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 121:877–894. doi: 10.1007/s00122-010-1357-y CrossRefPubMedGoogle Scholar
  9. Ghomi K, Rabiei B, Sabouri H, Sabouri A (2013) Mapping QTLs for traits related to salinity tolerance at seedling stage of rice (Oryza sativa L.): an agrigenomics study of an Iranian rice population. OMICS 17:242–251. doi: 10.1089/omi.2012.0097 CrossRefPubMedGoogle Scholar
  10. Guo Y, Kong FM, Xu YF, Zhao Y, Liang X, Wang YY, An DG, Li SS (2012) QTL mapping for seedling traits in wheat grown under varying concentrations of N, P and K nutrients. Theor Appl Genet 124:851–865. doi: 10.1007/s00122-011-1749-7 CrossRefPubMedGoogle Scholar
  11. Jiang H, Jiang L, Guo LB, Gao ZY, Zeng DL, Zhu LH, Liang GH, Qian Q (2008) Conditional and unconditional mapping of quantitative trait loci underlying plant height and tiller number in rice (Oryza sativa L.) grown at two nitrogen levels. Prog Nat Sci 18:1539–1547. doi: 10.1016/j.pnsc.2008.05.025 CrossRefGoogle Scholar
  12. Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugenic 12:172–175CrossRefGoogle Scholar
  13. Lee GJ, Carter TE Jr, Villagarcia MR, Li Z, Zhou X, Gibbs MO, Boerma HR (2004) A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor Appl Genet 109:1610–1619. doi: 10.1007/s00122-004-1783-9 CrossRefPubMedGoogle Scholar
  14. Lee SY, Ahn JH, Cha YS, Yun DW, Lee MC, Ko JC, Lee KS, Eun MY (2006) Mapping of quantitative trait loci for salt tolerance at the seedling stage in rice. Mol Cells 21:192–196PubMedGoogle Scholar
  15. Li HH, Ye GY, Wang JK (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374. doi: 10.1534/genetics.106.066811 CrossRefPubMedCentralPubMedGoogle Scholar
  16. Li HH, Ribaut JM, Li ZL, Wang JK (2008a) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet 116:243–260. doi: 10.1007/s00122-007-0663-5 CrossRefPubMedGoogle Scholar
  17. Li YL, Dong YB, Cui DQ, Wang YZ, Liu YY, Wei MG, Li XH (2008b) The genetic relationship between popping expansion volume and two yield components in popcorn using unconditional and conditional QTL analysis. Euphytica 162:345–351. doi: 10.1007/s10681-007-9513-4 CrossRefGoogle Scholar
  18. Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260. doi: 10.1007/s00122-003-1421-y CrossRefPubMedGoogle Scholar
  19. Liu G, Yang J, Xu H, Zhu J (2007) Influence of epistasis and QTL × environment interaction on heading date of rice (Oryza sativa L.). J Genet Genomics 34:608–615. doi: 10.1016/S1673-8527(07)60069-1 CrossRefPubMedGoogle Scholar
  20. Ma XQ, Tang JH, Teng WT, Yan JB, Meng YJ, Li JS (2007) Epistatic interaction is an important genetic basis of grain yield and its components in maize. Mol Breed 20:41–51. doi: 10.1007/s11032-006-9071-9 CrossRefGoogle Scholar
  21. Mano Y, akeda TK (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L). Euphytica 94:263–272. doi: 10.1023/A:968207362 CrossRefGoogle Scholar
  22. Marza F, Bai GH, Carver BF, Zhou WC (2006) Quantitative trait loci for yield and related traits in the wheat population Ning7840 × Clark. Theor Appl Genet 112:688–698. doi: 10.1007/s00122-005-0172-3 CrossRefPubMedGoogle Scholar
  23. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. doi: 10.1146/annurev.arplant.59.032607.092911 CrossRefPubMedGoogle Scholar
  24. Prasad SR, Bagali PG, Hittalmani S, Shashidhar HE (2000) Molecular mapping of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). Curr Sci India 78:162–164Google Scholar
  25. Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880. doi: 10.1007/s00122-004-1902-7 CrossRefPubMedGoogle Scholar
  26. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146. doi: 10.1038/ng1643 CrossRefPubMedGoogle Scholar
  27. Rodriguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160. doi: 10.1093/Jxb/Erj068 CrossRefPubMedGoogle Scholar
  28. Saghaimaroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley—mendelian inheritance, chromosomal location, and population-dynamics. Proc Natl Acad Sci USA 81:8014–8018. doi: 10.1073/pnas.81.24.8014 CrossRefGoogle Scholar
  29. Serrano R (1996) Salt tolerance in plants and microorganisms: toxicity targets and defense responses. Int Rev Cytol 165:1–52. doi: 10.1016/S0074-7696(08)62219-6 CrossRefPubMedGoogle Scholar
  30. Shen XL, Zhang TZ, Guo WZ, Zhu XF, Zhang XY (2006) Mapping fiber and yield QTLs with main, epistatic, and QTL × environment interaction effects in recombinant inbred lines of upland cotton. Crop Sci 46:61–66. doi: 10.2135/scopsci2005.0056 CrossRefGoogle Scholar
  31. Sun XY, Wu K, Zhao Y, Kong FM, Han GZ, Jiang HM, Huang XJ, Li RJ, Wang HG, Li SS (2009) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615–624. doi: 10.1007/s10681-008-9794-2 CrossRefGoogle Scholar
  32. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527. doi: 10.1093/Aob/Mcg058 CrossRefPubMedCentralPubMedGoogle Scholar
  33. Thomson MJ, de Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL, Tumimbang-Raiz E, Blumwald E, Seraj ZI, Singh RK, Gregorio GB, Ismail AM (2010) Characterizing the saltol quantitative trait locus for salinity tolerance in rice. Rice 3:148–160. doi: 10.1007/s12284-010-9053-8 CrossRefGoogle Scholar
  34. Wang Z, Wu X, Ren Q, Chang X, Li R, Jing R (2010) QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica 174:447–458. doi: 10.1007/s10681-010-0166-3 CrossRefGoogle Scholar
  35. Wang Z, Cheng J, Chen Z, Huang J, Bao Y, Wang J, Zhang H (2012) Identification of QTLs with main, epistatic and QTL × environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. Theor Appl Genet 125:807–815. doi: 10.1007/s00122-012-1873-z CrossRefPubMedGoogle Scholar
  36. Wu JX, Jenkins JN, McCarty JC, Zhu J (2004) Genetic association of yield with its component traits in a recombinant inbred line population of cotton. Euphytica 140:171–179. doi: 10.1007/s10681-004-2897-5 CrossRefGoogle Scholar
  37. Xu YF, An DG, Liu DC, Zhang AM, Xu HX, Li B (2012) Mapping QTLs with epistatic effects and QTL × treatment interactions for salt tolerance at seedling stage of wheat. Euphytica 186:233–245. doi: 10.1007/s10681-012-0647-7 CrossRefGoogle Scholar
  38. Xu Y, Li S, Li L, Zhang X, Xu H, An D, Igartua E (2013) Mapping QTLs for salt tolerance with additive, epistatic and QTL × treatment interaction effects at seedling stage in wheat. Plant Breed 132:276–283. doi: 10.1111/pbr.12048 CrossRefGoogle Scholar
  39. Xu Y, Wang R, Tong Y, Zhao H, Xie Q, Liu D, Zhang A, Li B, Xu H, An D (2014) Mapping QTLs for yield and nitrogen-related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression. Theor Appl Genet 127:59–72. doi: 10.1007/s00122-013-2201-y CrossRefPubMedGoogle Scholar
  40. Yan JQ, Zhu J, He CX, Benmoussa M, Wu P (1998) Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet 97:267–274. doi: 10.1007/s001220050895 CrossRefGoogle Scholar
  41. Yan JB, Tang H, Huang YQ, Shi YG, Li JS, Zheng YL (2003) Dynamic analysis of QTL for plant height at different developmental stages in maize (Zea mays L.). Chin Sci Bull 48:2601–2607. doi: 10.1360/03wc0044 CrossRefGoogle Scholar
  42. Yang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723. doi: 10.1093/bioinformatics/btm494 CrossRefPubMedGoogle Scholar
  43. Zhang KP, Tian JC, Zhao L, Wang SS (2008) Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat. J Genet Genomics 35:119–127. doi: 10.1016/S1673-8527(08)60017-X CrossRefPubMedGoogle Scholar
  44. Zhang H, Cui F, Wang L, Li J, Ding AM, Zhao CH, Bao YG, Yang QP, Wang HG (2013) Conditional and unconditional QTL mapping of drought-tolerance-related traits of wheat seedling using two related RIL populations. J Genet 92:213–231. doi: 10.1007/s12041-013-0253-z CrossRefPubMedGoogle Scholar
  45. Zhao JY, Becker HC, Zhang DQ, Zhang YF, Ecke W (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113:33–38. doi: 10.1007/s00122-006-0267-5 CrossRefPubMedGoogle Scholar
  46. Zhu J (1995) Analysis of conditional genetic-effects and variance-components in developmental genetics. Genetics 141:1633–1639PubMedCentralPubMedGoogle Scholar
  47. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71. doi: 10.1016/S1360-1385(00)01838-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Dezhou Cui
    • 1
  • Dandan Wu
    • 2
  • Yamuna Somarathna
    • 3
  • Chunyan Xu
    • 1
  • Song Li
    • 1
  • Peng Li
    • 1
  • Hua Zhang
    • 3
  • Huabang Chen
    • 3
  • Li Zhao
    • 3
  1. 1.The State Key Lab of Crop Biology, College of AgricultureShandong Agricultural UniversityTai’anChina
  2. 2.School of Life ScienceShandong UniversityJinanChina
  3. 3.The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina

Personalised recommendations