Skip to main content
Log in

OsHox4 regulates GA signaling by interacting with DELLA-like genes and GA oxidase genes in rice

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Gibberellic acid (GA) plays an essential role in many plant growth and developmental processes. Overexpression of rice (Oryza sativa L.) HOMEOBOX4 (OsHox4) gene in rice variety IR64 under the control of CaMV 35s promoter caused varying degrees of dwarfism and bushy tillers. Further investigation showed that over-expression of OsHox4 in indica rice induced semi-dwarf by repressing stems cell elongation. This repression could be eliminated by exogenously applied Gibberellin-4 (GA4) suggested that OsHox4 was involved in GA metabolism. Investigations of the expressions of rice DELLA-like subfamily genes, GA 3-oxidase family genes and GA 2-oxidase family genes by qRT-PCR showed that OsHox4 played an important role in GA deactivation and signaling by controlling the expression of rice DELLA-like subfamily genes, rice GA 2-oxidase family genes and rice GA 3-oxidase family genes. Our experiment provided an evidence that over-expression of OsHox4 in transgenic rice resulted in a semi-dwarf phenotype that could be fully rescued by application of exogenous GA4. The OsHox4 plays an important role in GA deactivation by controlling the expression of rice DELLA subfamily genes, rice GA 2-oxidase family genes and rice GA 3-oxidase family genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agalou A, Purwantomo S, Overnäs E, Johannesson H, Zhu X, Estiati A, de Kam RJ, Engström P, Slamet-Loedin IH, Zhu Z, Wang M, Xiong L, Meijer AH, Ouwerkerk PB (2008) A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members. Plant Mol Biol 66:87–103

    Article  CAS  PubMed  Google Scholar 

  • Bjorklund S, Antti H, Uddestrand I, Moritz T, Sundberg B (2007) Cross-talk between gibberellin and auxin in development of populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J 52:499–511

    Article  PubMed  Google Scholar 

  • Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692

    Article  CAS  PubMed  Google Scholar 

  • Covington MF, Harmer SL (2007) The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS Biol 5:1773–1784

    Article  CAS  Google Scholar 

  • Dai M, Hu Y, Ma Q, Zhao Y, Zhou DX (2008) Functional analysis of rice HOMEOBOX4 (OsHox4) gene reveals a negative function in gibberellin responses. Plant Mol Biol 66:289–301

    Article  CAS  PubMed  Google Scholar 

  • Desgagne-Penix I, Sponsel VM (2008) Expression of gibberellin 20-oxidase1 (AtGA20ox1) in Arabidopsis seedlings with altered auxin status is regulated at multiple levels. J Exp Bot 59:2057–2070

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evans LT (1993) Crop evolution, adaptation and yield. Cambridge University Press, Cambridge

    Google Scholar 

  • Fleet CM, Sun T (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743

    Article  CAS  PubMed  Google Scholar 

  • Gomi K, Matsuoka M (2003) Gibberellin signalling pathway. Curr Opin Plant Biol 6:489–493

    Article  CAS  PubMed  Google Scholar 

  • Hartweck LM (2008) Gibberellin signaling. Planta 229:1–13

    Article  CAS  PubMed  Google Scholar 

  • Hay A, Craft J, Tsiantis M (2004) Plant hormones and homeoboxes: bridging the gap? Bioessays 26:395–404

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Komari T (2006) Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 85:271–283

    Article  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirano K, Nakajima M, Asano K et al (2007) The GID1-mediated gibberellin perception mechanism is conserved in the Lycophyte Selaginella moellendorffii but not in the Bryophyte Physcomitrella patens. Plant Cell 19:3058–3079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell, 13:999–1010

  • Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin Ssignaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14:57–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johannesson H, Wang Y, Hanson J, Engström P (2003) The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings. Plant Mol Biol 51:719–729

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mason HS, Lam DM, Arntzen CJ (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci 89:11745–11749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meijer AH, de Kam RJ, d’Erfurth I, Shen W, Hoge JH (2000) HD-Zip proteins of families I and II from rice: interactions and functional properties. Mol Gen Genet 263:12–21

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser JL, Hong F, Chory J (2006) Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467–477

    Article  CAS  PubMed  Google Scholar 

  • Ogawa M, Kusano T, Katsumi M, Sano H (2000) Rice gibberellin-insensitive gene homolog, OsGAI, encodes a nuclear-localized protein capable of gene activation at transcriptional level. Gene 245:21–29

    Article  CAS  PubMed  Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism and response pathways. Plant Cell 14:61–80

    Google Scholar 

  • Rosin FM, Hart JK, Horner HT, Davies PJ, Hannapel DJ (2003) Overexpression of a knotted-like homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation. Plant Physiol 132:106–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sakamoto T, Miura K, Itoh H et al (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sasaki A, Itoh H, Gomi K et al (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299:1896–1898

    Article  CAS  PubMed  Google Scholar 

  • Sawa S, Ohgishi M, Goda H, Higuchi K, Shimada Y, Yoshida S, Koshiba T (2002) The HAT2 gene, a member of the HD-Zip gene family, isolated as an auxin inducible gene by DNA microarray screening, affects auxin response in Arabidopsis. Plant J 32:1011–1022

    Article  CAS  PubMed  Google Scholar 

  • Silverstone AL, Jung H-S, Dill A, Kawaide H, Kamiya Y, Sun T-P (2001) Repressing a repressor: gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13:1555–1566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plant. Annu Rev Plant Biol 55:197–223

    Article  CAS  PubMed  Google Scholar 

  • Thomas SG, Rieu I, Steber CM (2005) Gibberellin metabolism and signaling. Vitam Horm 72:289–338

    Article  CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Nakajima M, Motoyuki A, Matsuoka M (2007) Gibberellin receptor and its role in gibberellin signaling in plants. Annu Rev Plant Biol 58:183–198

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The present research was financially supported by CGIAR (Consultative Group on International Agricultural Research) HarvestPlus Challenge Program (Project Number M013260-001). The authors are obliged to the anonymous reviewers and editors who we would also like to thank for their thoughts, comments and suggestions.

Conflict of interest

Authors declared that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 30 kb)

Supplementary material 2 (XLS 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Malabanan, P.B. & Abrigo, E. OsHox4 regulates GA signaling by interacting with DELLA-like genes and GA oxidase genes in rice. Euphytica 201, 97–107 (2015). https://doi.org/10.1007/s10681-014-1191-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-014-1191-4

Keywords

Navigation